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Survival Models
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Two kinds of Survival Models

Event Model:

modeling probability of 
surviving beyond a time 

threshold

Example: Attrition 
Probability

Popular technique: Cox 
Regression

Waiting time 
model:

modeling waiting time till 
an event

Example: Attrition Timing

Popular Technique: AFT



Survival Models
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Traditional 
Solutions

Proportional 
Hazard

Accelerated 
Failure Time

Markov Chain

Discrete Time 
Survival 

Regression

Using Logistic 
Regression

Using Ensemble 
Learning (RF, 

GBM)

Using Neural 
Networks

Using SVM, 
CART etc

Solutions
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Survival Models: beyond 
mortality in Insurance
- Lapse
- Survival of reserves in non-life



Customer Lifetime Value 
& Attrition
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In insurance:
• 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 = ∑𝑡𝑡=1∞ 𝑒𝑒−𝑟𝑟𝑡𝑡 × 𝑃𝑃(𝐴𝐴 ≥ 𝑡𝑡) × [𝑃𝑃(𝑆𝑆 ≥ 𝑡𝑡) × 𝐼𝐼𝑡𝑡 +𝑃𝑃(𝑆𝑆 = 𝑡𝑡) × 𝐷𝐷𝑡𝑡]

S= Remaining lifetime after time 0
A = Time to attrition
𝐼𝐼𝑡𝑡 = Net income at time t if survives time t (usually positive)
𝐷𝐷𝑡𝑡= Net income due to death at time t (usually negative)

Insurance:
Mortality and Lapse both important
Long tenure
Traceable customer
Death is usually reported

Retail:
Lapse contains mortality
Short Tenure (not really a lifetime)
Not 100% traceable customers
Death is untraceable
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Customer Value in Retail

- Structural CLTV approach: 
- Survival model and a Money model

- Distribution based CLTV: Buy Till You Die (BTYD)
- Two distributions calibrated from customer’s own data

- Probability of Being Alive
- Probability of a purchase

- Pareto/NBD, Beta-Geometric(BG)/NBD

- RFM or Recency Frequency Money
- Customer Lifetime Value



Survival Models: beyond 
Cox & AFT
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• Discrete time survival regression:
– GLM based (Logistic/Poisson)
– Ensemble Learning (Random Forest/ GBM)
– Others (SVM/ANN)

• Advantages:
– No nonparametric estimation for baseline hazard
– Handling of high dimensionality 

(Regularization/Ensemble)



Survival Models for Product 
Recommendation
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Product 
recommendation:
• Waiting time: 

Time between 
two purchase 
for repeating 
buyers 

• A purchase is an 
event which is a 
function of how 
long the 
customer is 
waiting in a 
non-purchase 
state and other 
covariates 
(product 
features, 
customer 
features and 
time features)

Two States

Waiting to Buy Purchase

(Surviving) (Dead)

Purchase

Purchase

Purchase

Purchase
(Yes/No)?

Waiting 
Time t-2

Waiting 
Time t-1

Waiting 
Time t0

+ Covariates

• Customer Features

• Product Features

• Time Features
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Survival Models for 
Product Recommendation
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*IPI= Inter Purchase Interval; S(t)= P[waiting time > t] 

Product recommendation as a waiting process until 
the customer’s natural comeback time overshoots

S(t)= Survival Probability i.e. Pr(Wait for customers come back continues beyond 
t) ::: Strictly non-increasing function of t

Buyer 1 
(Low IPI* 

Buyer)

Buyer 2 
(High IPI* 

Buyer)

Reminding Buyer 1 (frequent 
buyer) at 7th week is equivalent 
to reminding Buyer 2 (less 
frequent buyer) at 10th week 
(equivalent in terms expected 
chance of repeat purchase)



Survival Models: other use 
cases
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• Inventory management:
– Next demand generation as a function of time 

since previous demand generation
– Next supply as a function of time since 

previous supply
• Queuing theory



The way we model: 
differences
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Insurance 
(Pricing and 
Reserving)
Transparency for 

regulators

Explainability for 
decision makers

Whitebox models

Insurance 
(Marketing)

No role of 
regulators

Explainability
subjective

Blackbox/ 
Whitebox both 

accepted

Retail 
Analytics

No role of 
regulators

Explainability
subjective

Blackbox/ 
Whitebox both 

accepted



Cashflow models (Examples)
• An annual subscription based business offering 

flexibility in renewal date 
Scheduled Expiry date 

of subscriptions

Renew 
@ t-2

Renew 
@ t-1

Renew 
@ t0

Renew 
@ t+1

Renew 
@ t+2

Renew 
@ t+3

Contributes to Early Cashflow Contributes to Late Cashflow

Renewal Probabilities 
at different time 

thresholds modeled 
using Survival Models

Multiplied with 
Subscription Amount 

and Aggregated Original Expiry 
Month of 

Subscriotion -2 -1
On Expiry 

Month +1 +2 +3
Jan-2019 1.30% 9.50% 36.00% 7.70% 3.20% 1.90%
Feb-2019 0.60% 8.10% 33.40% 7.30% 2.80% 1.90%
Mar-2019 0.80% 9.10% 33.20% 6.40% 2.90% 1.60%
Apr-2019 1.00% 8.60% 35.00% 7.50% 3.10% 1.80%
May-2019 1.00% 9.40% 34.90% 7.30% 2.80% 1.80%
Jun-2019 0.70% 8.50% 35.20% 7.10% 3.00% 1.90%

Early Cashflow Late Cashflow
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Cashflow Models: main 
differences
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• Life Insurance (usual scenario):
– Positive Cashflow on survival
– Negative cashflow on death/maturity
– Traceable death

• Pension:
– Negative Cashflow on survival
– No cashflow on death
– Traceable death

• Retail Subscription:
– Positive cashflow on survival
– No cashflow on death
– Untraceable death



Crossroads
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Now:

Prospect:

Challenges:
- Personal Data
- Adverse selection and bias on both side through 

voluntary participation

Opportunities:
- Profiling at geographic level

Insurance Fitbit

Insurance
Alternative to 
Fitbit using 

consumption 
history
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