4th Seminar on Data Science and Analytics Hotel Ramada, Gurgram 2 November 2019

Digital Behavior – A Hidden Treasure

Ankit Mittal Vice President – Actuarial – Policybazaar.com

Institute of Actuaries of India

Index

- Need to understand Customer and Risk both
- Digital Data/Behavior Importance for Actuaries
- Techniques used to model Digital Data
 - Pvt. Cars –Increase in unassisted business & Understanding factors affecting claims
 - Health Lead allocation and conversions
- Move towards using actuarial strengths in business-wide areas?

Need to understand Customer and Risk both

Are traditional risk based approaches enough?

Traditional Approaches – Can we get answers to these?

- Individuals driving similar cars with same traffic and road conditions Should they be charged same price?
- Price, Brand or Customization What matters to a customer?
- Know more about a customer What should we know more ? Can we then Price better ?
- Which lead has a higher chance of becoming a customer?
 -And we can continue to find endless questions

How Can actuaries bridge this gap and provide an enterprise wide solutions using data that can be derived to know more about a customer

The list continues with more than 50 parameters studied

www.actuariesindia.org

Digital Data/Behavior for Actuaries

What is digital data and what inference can be drawn - contd..

Techniques used to model Digital Data Pvt. Cars – Increase in Unassisted Share

GLM Model created – Response Variable considered "Direct (Unassisted) Booking"

Propensity model built using a Binomial distribution function and Logit link function

Parameters Considered

- 1. Lead Source
- 2. Selection in 5 minutes
- 3. V. Make
- 4. V. Model
- 5. NCB
- 6. V. Age
- 7. Fuel
- 8. Geography
- 9. Time to Expiry
- 10. Time in journey
- 11. Prev. Term Booking

- 12. SI in Term
- 13. Prev. TW Booking(s)
- 14. Prev. Motor Booking
- 15. Prev. Insurer
- 16. Previous NCB
- 17. Prev. Health Booking
- 18. SI in Health
- 19. Prev. Travel Booking(s)
- 20. Prev. Investment Booking
- 21. Day and time of lead creation
- 22. Time spent on each page

Model assigned a propensity score to each lead – higher the score, higher the time for which lead kept unassigned

Share of unassisted business increased from 35% (overall) to 48% (on pilot data)

Techniques used to model Digital Data Pvt. Cars – Increase in Unassisted Share - Benefits

Cost savings to Policybazaar (PB) – Significant reduction in agent costs

Beneficial for Insurers – Direct correlation with lower LRs

Helpful to PB's Operations team – time of agents spent on leads that need assistance

Helpful to PB's Marketing team– Marketing spends channelized towards source (data segments) that creates more unassisted leads

Insights for PB's BD team- Give insights on price vs. brand value for each insurer

Overall value proposition to PB's shareholders – Helps in generating overall efficiencies in a low premium high transactions product

Techniques used to model Digital Data Pvt. Cars – Understanding risk from Claims perspective

20% claims frequency imply 80% profitable business – Still UW losses

Insurers with high rate realization also showing LRs that are leaving no/little margins

Where can the problem be?

Are we ignoring data that is available and is a good proxy to understand risk better

Techniques used to model Digital Data Pvt. Cars – Use of AI – Frequency Outcome

Based on only Traditional Risk Parameters – in Al

AI on traditional parameters compared with tec. (traditional and digital) and actual data shows multiple discontinuities in AI curve

Techniques used to model Digital Data Pvt. Cars – Use of AI – Frequency Outcome

Based on only Traditional + Digital Parameters – in Al

Al curve on traditional and digital parameters smoothens out and provides similar gradient as actual and technical curves on frequency

GLM Model created – Response Variable considered "Is Booked"

Propensity Model

- Link Function : Logit
- Distribution: Binomial

Premium Model

- Link Function : Log
- Distribution: Gamma

	Parameters Considered						
(1.	Lead Source	15.	Prev. Tw Booking				
2.	UTM Source	16.	Prev. Motor Booking				
3.	UTM Medium	17.	Prev. Travel Booking				
4.	Compare	18.	Prev. Investment Booking				
5.	Tag	19.	Lead Time				
6.	Repeat Parent Lead	20.	First selected insurer				
7.	IS PED	21.	Self selection before call				
8.	No. of Children	22.	Self selection before assignment				
9.	No. of Adults	23.	CTC count				
10.	Self Age	24.	Chat status				
11.	Geography	25.	Gender				
12.	No. of prev. health booking	26.	Lead Day				
13.	Annual Income	27.	Selected Premium Range by user				
\14.	Prev. Term Booking						

Correlation studied to check if any factors needed to be removed

Parameters reduced to include mainly independent parameters

Propensity Model

- Link Function : Logit
- Distribution: Binomial

Premium Model

- Link Function : Log
- Distribution: Gamma

Paramete	Parameters Used in final Model		
Lead Source UTM Source UTM Medium Compare Tag Repeat Parent Lead IS PED No. of Children No. of Adults Self Age Geography No. of prev. health booking Annual Income Prev. Term Booking	 Prev. Tw Booking Prev. Motor Booking Prev. Travel Booking Prev. Investment Booking Lead Time Ead Time First selected insurer Self selection before call Self selection before assignment CTC count Chat status Gender Lead Day Selected Premium Range by 	 Lead Source UTM Source Compare Repeat Parent Lead IS PED No. of Children Self Age Geography No. of prev. health booking Annual Income Prev. Term 	 Booking Prev. Tw Booking Prev. Investment Booking Lead Time First selected insurer Chat status Gender

Revised Correlation Chart

Multiple interactions created to capture the combined effect

Lead Grade	Propensity Level	Lead Share	Bookings Share	Strength of Actuarial Model	
	0.7-0.8	5%	22%	2.3x	
	0.6-0.7				
	0.5-0.6				
A1	0.4-0.5				
	0.3-0.4				
	0.2-0.3				
	0.1-0.2				
	0.095-0.1			1.7x	
	0.09-0.095	-			
	0.085-0.09		20%		
Α2	0.08-0.085	9%			
112	0.075-0.08				
	0.07-0.075				
	0.065-0.07				
	0.06-0.065				
	0.055-0.06		32%	1.2x	
	0.05-0.055				
A3	0.045-0.05	26%			
115	0.04-0.045				
	0.035-0.04				
	0.03-0.035				
	0.025-0.03		22%	0.8x	
Δ.4	0.02-0.025	35%			
	0.015-0.02				
	0.01-0.015				
Δ5	0.005-0.01	25%	494	0.4×	
ΩJ	0-0.005	2.370	470	0.77	

14% leads converted into 42% of overall health business

Assignment of high converting leads when happening on pure segmentation basis was not giving desired efficiencies

A1 leads showed 2.3x higher conversion when compared with earlier segmentation based models

60% leads that were originally being given full effort actually fell into lowest range of conversion propensity – can be assigned to low ranked agents / use for training purposes

Health propensity model provided the best possible outcome for PB – Margins improvement, most optimal utilization of operations team, clear vision for marketing team for spends, more time now being spent in improving customer experience further and all these bringing increased ROI for shareholders

Actuarial strengths in business-wide areas

Are we ready to take our skills in non-traditional roles?

- Institute of Actuaries of India
- Actuarial applications at PB showed all round efficiencies for BD, Operations, Marketing and Partners
- Internal efficiencies are gaining strength, we can step up to take the challenge further – helping partners differentiate between good and bad risk
- There is enough data that suggests that industry can move back towards pure technical pricing
- Actuaries Underwriters, Data people, Data scientists......
- Together we can demonstrate to stakeholders and regulator that the bank of data residing within our servers is a treasure

A treasure that is hidden but not yet hidden!!

Thank You

Institute of Actuaries of India