

Volatility modeling to identify & forewarn an asset bubble

Speaker Vijay Gautam

> Session # Dated 5-March-2019

Table of Contents

Agenda

- 1 Introduction: Financial bubble explained
- 2 Statistical test for identifying a financial bubble
- **3** Backtesting the methodology on Bitcoin
- 4 Questions & Answers

Table of Contents

Agenda

- 1 Introduction: Financial bubble explained
 - 1 What is an asset / financial bubble?
 - 2 Stages of a financial bubble
 - 3 Reasons of financial bubble
- 2 Statistical test for identifying a financial bubble
- **3** Backtesting the methodology on Bitcoin
- 4 Questions & Answers

What is an asset/ financial bubble?

<u>Definition</u>: Quick rise in asset price due to sustained mispricing and abnormally high investors' expectations.

During bubble: -

- extremely high market price
- extremely high valuations
- dramatic price rise
- Market price >> fair value (fundamentals)

Stages of a financial bubble (1/2)

- i) displacement
 - paradigm shift in the economy due to new technology or financial

innovation

ii) boom

- consistent rise in asset price, due to increase in investment
- characterized by low volatility, credit expansion

iii) euphoria

- more and more investors join the bandwagon
- explosion in asset price
- unrealistically high valuations
- high volatility, trading volume

Stages of a financial bubble (2/2)

iv) profit taking

- astute investors start seeing an imminent fall in market

sentiments

- book partial or complete profit
- but new and novice investors keep joining and sustain high

prices v) panic

- a minor event leads to bubble burst
- sudden fall in asset price
- often like a free fall, due to massive selling of the asset

Reasons of financial bubble

Some reasons of bubble building: -

(1) A business/ financial innovation; e.g. e-commerce bubble of late '90s

(2) Irrational expectations of investors

(3) Incomplete information in the market on an asset

(4) Sudden euphoria after a big change; e.g. a new infrastructure

(5) Anticipation of quick profit and fear of losing out in the ongoing rally

- results in large trading volume
- more investors further fuel the rally

(6) Durable and saleable asset that can be sold as many times for quick profit

(7) Investors/ traders who buy due to replacement price rather than fundamentals - traders who buy and resale the asset in short time

Table of Contents

Agenda

- **1** Introduction: Financial bubble explained
- 2 Statistical test for identifying a financial bubble
 - 1 Mathematical treatment of bubble theory
 - 2 Methodology for the statistical test
 - 3 Applications of the statistical test
- **3** Backtesting the methodology on Bitcoin
- 4 Questions & Answers

Mathematical treatment of bubble theory (1/2)

Stochastic calculus helps in understanding, analysis and modeling of financial bubbles.

Martingale process (random walk): -

- A discrete time-dependent stochastic process (discrete points X₁, X₂, X₃,, X_{n-1}, X_n).
- $E(|X|) < \Box$, and $E(X_n) = X_{n-1}$.

Strict Local martingale process: -

- A discrete time-dependent stochastic process (discrete +ve points X₁, X₂, X₃,, X_{n-1}, X_n)
- $E(|X|) < \Box$, and $E(X_n) > X_{n-1}$.
- Mutually exclusive with martingale.

Strict local martingale process:

- first quickly shoots to high values
- then decrease to small values and stays there
- Mirrors typical behavior of bubble

Hence, bubbles are modeled using strict local martingale process.

Mathematical treatment of bubble theory (2/2)

(1) Stochastic asset pricing model : $dS(t)/S(t) = \mu dt + \sigma(t)^* dW(t)$

(2) Asset price S(t) and price volatility $\sigma(t)$ are stochastic (dependent on process path and time)

$$\int_{\epsilon}^{\infty} \frac{x}{\sigma(x)^2} dx < \infty.$$

(3) S(t) for a given time interval is strict local martingale it

where x: price path, $\sigma(x) = \int_{\epsilon}^{\infty} \frac{x}{\sigma(x)^2} dx$ endent volatility and ϵ : *minimum* asset price in the interval (4) If the definite integral is finite/ convergent, then there is a bubble. If the integral is divergent, there is no bubble.

(5) In case of bubble, volatility becomes extremely high for very high values of x (asset price).

(6) For discrete points, integral can be approximated with: $\Sigma(x / \sigma(x)^2)$.

Methodology for the statistical test

(1) High Frequency (per minute, at xx : xx : 00) trade data used

(2) Periods with high daily price movement (5%, 7%, 10%) considered

(3) Price volatility estimated using stochastic volatility estimator (e.g. Florens-Zmirou estimator) at each price point

(4) Graphs plotted: (1) volatility ($\sigma(x)$) vs. price (x), (II) Σ (x / $\sigma(x)^2$) vs. price (x)

(5) Asymptotic value of the integra $\int_{\epsilon}^{\infty} \frac{x}{\sigma(x)^2} dx$ inferred from both plots

(6) A finite asymptotic value of integral => strictly local martingale => a bubble.

Statistical test

Applications of the statistical test

This highly useful statistical test can be applied to assets like: -

- individual stocks
- stock ETFs
- bond ETFs
- commodities
- currencies
- cryptocurrencies
- stock indices
- even the complete stock market

Mandatory condition: Test can be conducted only on HFT data for a frequently traded asset.

The test cannot be applied to infrequently traded assets like: -

- corporate bonds (high yield/ illiquid bonds)
- real estate transactions

Table of Contents

Agenda

- **1** Introduction: Financial bubble explained
- 2 Statistical test for identifying a financial bubble
- 3 Backtesting the methodology on Bitcoin
 - 1 Bitcoin price movement in 2017
 - 2 Bubble testing for various periods
 - 3 Illustrative volatility graphs
- 4 Questions & Answers

Bitcoin price behavior in 2017

In 2017, Bitcoin had risen from \$998.05 (Jan 1) to \$20,000 (Dec 17): a rise of 20x!

Analysis of volatility and the integr $\int_{\epsilon}^{\infty} \frac{x}{\sigma(x)^2} dx$ proves that Bitcoin was in bubble during 2017 and Jan, Feb 2018.

- Volatility modeling on tick data reveals low volatility, decreasing with price
- Inference: NO BUBBLE

Data characte	8000		
		7000	
Period start	27-Mar-17	6000	
	27-May-		
Period end	17	5000	
Days	62	0004 olatilit	
Minimum price	\$960.2	> 3000	
Maximum price	\$2,779.0	2000	
Daily volatility	3.16%	1000	

- Volatility modeling on tick data reveals high volatility, increasing with price
- Inference: A BUBBLE

- Volatility modeling on tick data reveals high volatility, increasing with price
- Inference: A BUBBLE

Data characteristics					
Period start	31-Dec-17				
Period end	7-Jan-18				
Days	8				
Minimum price	\$12,540.0				
Maximum price	\$17,222.0				
Daily volatility	6.75%				

- Volatility modeling on tick data reveals very high volatility across the period
- Inference: A BUBBLE

Illustrative volatility graphs

Bubble is present

Price

Illustrative volatility graphs

Bubble is absent

Summary of test results (2017)

Ctort data	Daily		Daily change	Devia	Min Drice	N	Any Drien	Daily	Test sensive?	Dubble?
Start date	cnange	End date	Daily change	Days	Win Price	IV	lax Price	volatility	l'est conclusive?	Bupple:
		18-Mar-								
17-Jan-17	8.90%	17	-9.12%	61	\$ 834.0	\$	1,322.7	3.37%	Ν	
		27-Mav-								
27-Mar-17	7 61%	17	-7 29%	62	\$ 960.2	\$	2,779.0	3 16%	γ	Y
2, 10101 2,	7.0170	±7	7.2370	02	¢ 500.2	Ψ	2,775.0	0.10,0	•	
20 May 17	7 2 2 0/	10 Jun 17	17/110/	1 5	₽ 21500	¢	2 075 0	E E 40/	V	V
29-101ay-17	1.55%	12-Jun-17	-12.41%	12	2,150.0	¢	2,975.0	5.54%	Y	Y
					\$					
17-Jun-17	7.10%	15-Jul-17	-10.27%	29	1,967.3	\$	2,785.2	4.11%	Ν	
					\$					
17-Jul-17	15.28%	25-Jul-17	-7.54%	9	1,897.9	\$	2,950.0	11.21%	Y	Y
					\$		·			
5-Aug-17	13.86%	2-Sen-17	-7 55%	29	2 840 3	\$	4 980 0	4 28%	N	
J Aug 17	13.0070	$2 \operatorname{Scp} 1$	7.5570	25	¢	Ψ	4,500.0	4.2070	IN	
15 0 17	14.000/	21-Sep-	C 070/	-	\mathbf{P}	æ	41170		V	N/
15-Sep-17	14.20%	1/	-6.97%	/	2,960.6	\$	4,117.0	7.95%	Y	Y
					\$					
25-Sep-17	7.59%	24-Oct-17	-6.73%	30	3,666.0	\$	6,178.5	3.79%	Y	Y
					\$	\$				
29-Oct-17	7.61%	9-Dec-17	-7.62%	42	5,480.0	17.	685.0	6.18%	Y	Y
		19-Dec-			\$	\$				
11 Dec 17	11 720/	17	0 200/	0	Ψ 15 260 0	Ψ 1Ω	000 0	6 5 1 9/	V	V
II-Dec-I/	11.7270	1/	-0.59%	9	15,209.0	19,	999.0	0.54%	Y	Y
		28-Dec-		-	\$	\$				
26-Dec-17	15.09%	17	-6.89%	3	13,562.0	16,	500.0	11.53%	Y	Y
					\$	\$				Sector the h
31-Dec-17	11.50%	8-Jan-18	-7.82%	9	12,540.0	17,	222.0	7.37%	Y	Y 1

20th Global Conference of Actuaries 4th - 6th March, 2019 | Mumbai, India

20th Global _____ Conference of Actuaries

4th - 6th March, 2019 | Mumbai, India

THANK YOU

Vijay Gautam