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Sales & Marketing 

• Customer response modeling 
(“propensity to buy/renew”) 

• Recommendations 

• Agent recruiting, quality 
assessment & monitoring  

Risk Selection /  

Risk Scoring 

• Predictive Underwriting 

• Underwriting triage 

• Risk quantifying & risk 
segmentation 

• Improve placement rates 

Pricing / Product 
Development 

• More pricing variables & more 
accurate 

• Better incorporated 
interaction  

• Price optimization 

• More accurate formula-driven 
assumptions 
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Experience Analysis 

• Mortality, lapse, incidence, etc 

• True multivariate approach 

• Efficient use of data 

• Handle low-credibility data 

• Create assumptions 

In-force Policy 
Management 

• Customer retention model 
“propensity to lapse/persist 

• Customer lifetime value 

Claims 
Administration 

• Claim risk scoring 

• Claims triage 

• Fraudulent claims 

• Rescinded claims 

Opportunity 
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PM for Actuary 

4 

Why actuaries need to bother with PM? 

PM advantage 

 True multivariate approach  

 Eliminate bias of uni-variate 

 Efficient way to use data 

 Better way for low credible data; improved results vs. traditional 

 Statistical results 

 Not only mean/expected values, but also uncertainty 

 Inclusion of interaction term 

 Two-way or higher order for correction of combination of certain 

variables 
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PM for Actuary 
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 GLM - main focus of PM in insurance industry 

 Inclusion of most distributions in insurance 

 Normal, binomial, Poisson, Gamma, inverse-Gaussian, Tweedie 

 Extension of Ordinary Least Square (OLS) 

   OLS 

   GLM 

 Easy to understand & communicate 

 Powerful and flexible 

 Weights for data credibility & offset for known effects 

 Non-linear relationships between variables by link function 

 Multiplicative model intuitive & consistent with actuarial practice 

 
 

 
 

 

    𝐸 𝑌   = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛 = 𝑖𝛽𝑖𝑋𝑖 
 
 

𝑔(𝐸 𝑌 ) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑛𝑋𝑛 = 𝑖𝛽𝑖𝑋𝑖 
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Generalized Linear Model 
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 “Bread and Butter” for PM in insurance 

 Great flexibility in variance structure 

 Baseline and intercept 

 Relatively easy to understand & explain 

 Good balance between accuracy & interpretability 

 

Distribution V(μ) Link Sample Application 

Normal 1 Identity (LM) General Application 

Poisson μ Log Claim frequency/count, experience 

Binomial μ(1-μ) Logistic Retention, cross-sell, UW, experience 

Gamma μ2 Log Claim severity 

Compound μp,p(1,2) Log Claim Cost & Premium 

Inverse-Gaussian μ3 Log Claim cost 
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Model 
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Methodology 

A properly constructed PM model can result with a 

multiplicative model 

R𝑎𝑡𝑒 = 𝑅𝑎𝑡𝑒𝑏𝑎𝑠𝑒 ∗ 𝐹𝑆𝑖
𝑖
∗ 𝐹𝐶𝑖,𝑗

𝑖,𝑗
 

Rate: mortality, lapse, incidence, termination/continuance, etc. 

𝐹𝑆𝑖 is factor for single variable i (main effect) 

𝐹𝐶𝑖,𝑗 is factor for 2-way interaction term of variable i and j; (higher order 

possible) 

 

• Consistent with current actuarial practice 

• Implement within existing system without overhaul 

• Intuitively easy to understand 
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How to build a model 
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 Set objective 

 what to achieve by PM 

 Process Data 

 Same as traditional one: understand business & data; clean 

data; transform data for experience study 

 May need to split data into development & validation subset 

 Fit a model 

 Select proper distribution for target variable; choose explanatory 

variables; determine if cross-terms are needed; assess model 

 Validate the model with validation dataset 

 Interpret model & implement 

 Understand model; extract business insights; implement in 

business process 

 Monitor & Update 
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Example – Lapse Model 
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Post-level Term Lapse 

 SOA research 

project on PLT 

lapse study 

conducted by RGA 

 Account for about 

2/3 of US term 

product sales 

 10-Year Term: 

Sample Premium 

Structure; 

traditional “Jump to 

ART” 
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Example – Lapse Model 
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 When combined with term tail 

mortality, it is a powerful tool for 

optimization 

 Lapse model data 

 Data on T10 for duration 10 

 Exposure about 690K years & 

lapse 480K 

  Variables: age, sex, UW risk, premium mode, premium jump ratio, 

exposure, lapse, face amount, distribution, base/rider, billing, etc. 

 Dataset split into two parts, 70% for model development, & 30% 

for model validation 

 Assumptions 

 You are an actuary, knowing goals, business & data 

 Data: cleaned, understood & processed 
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Model Results 
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Model Parameter Validation Results 
Variable Type Coefficient P-value Factor % Actual Predicted A/E 

Intercept  -  3.246 2.03E-14 
Issue Age Issue Age  Numerical  1.621E-01 <2.00E-16 

(Issue Age)^2  Numerical  -6.419E-04 <2.00E-16 
log(Issue Age)  Numerical  -2.725 <2.00E-16 

Risk Class Super-Pref NS  Categorical  0          1.00  17.0% 82.4% 82.5% 100% 

NS 0.03427 1.59E-09          1.03  70.5% 68.7% 68.2% 101% 

SM 0.1205 <2.00E-16          1.13  12.5% 67.4% 68.3% 99% 

Face Amount <50K  Categorical  0          1.00  0.3% 49.5% 55.7% 89% 

50-100K 0.3153 3.49E-15          1.37  6.4% 63.4% 63.0% 101% 

100K-250K 0.3437 <2.00E-16          1.41  43.9% 69.2% 68.9% 100% 

250K-1M 0.3652 <2.00E-16          1.44  41.2% 72.3% 72.1% 100% 

>1M 0.3645 <2.00E-16          1.44  8.2% 79.0% 79.3% 100% 

Premium Mode Annual  Categorical  0          1.00  22.8% 85.5% 85.0% 101% 

Semi/Quarter -0.03244 1.16E-11          0.97  39.8% 76.1% 75.8% 100% 

Monthly/BiWeekly -0.2755 <2.00E-16          0.76  34.4% 53.3% 53.5% 100% 

Other/Unknown 0.02057 0.0586          1.02  3.0% 91.1% 90.5% 101% 

Premium Jump PREM_JUMP 1-2  Categorical  0          1.00  5.6% 27.3% 26.9% 102% 

PREM_JUMP 2-3 1.135 <2.00E-16          3.11  13.8% 42.8% 43.0% 99% 

PREM_JUMP 3-4 1.492 <2.00E-16          4.45  10.5% 52.9% 52.6% 100% 

PREM_JUMP 4-5 1.826 <2.00E-16          6.21  10.5% 65.7% 65.1% 101% 

PREM_JUMP 5-6 2.082 <2.00E-16          8.02  9.0% 76.7% 76.4% 100% 

PREM_JUMP 6-7 2.118 <2.00E-16          8.31  8.8% 82.3% 81.7% 101% 

PREM_JUMP 7-8 2.176 <2.00E-16          8.81  7.5% 84.0% 84.1% 100% 

PREM_JUMP8-10 2.246 <2.00E-16          9.45  10.6% 86.2% 85.9% 100% 

PREM_JUMP 10-12 2.304 <2.00E-16        10.01  7.6% 89.0% 88.5% 101% 

PREM_JUMP 12-16 2.342 <2.00E-16        10.40  9.1% 89.4% 89.7% 100% 

PREM_JUMP 16-20 2.385 <2.00E-16        10.86  3.6% 92.8% 92.8% 100% 

PREM_JUMP >20 2.356 <2.00E-16        10.55  3.4% 93.7% 93.9% 100% 

Cross Term Issue Age & PREM_JUMP Mixed 
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 Model Results 
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 Validation results: model 

predictive power in real life 

business 

 Lapse rates vs. age and 

premium jump ratio 

 Data is the key 
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Example – Lapse Model 
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# 1. load data into R 
lapseData <- 
read.csv("SampleData2014SOAPM.csv") 
 

# 2. explore data: summary, read first 6 records  
summary(lapseData) 
head(lapseData) 
 

#other cmnds to explore: data field list, size, tail 
names(lapseData) 
dim(lapseData) 
tail(lapseData) 
aggregate(LapsedN ~RiskClass, data=lapseData, sum) 
 

#  3. build a model 
Model1 <- 
glm(LapsedN~offset(log(Exposure))+FaceAmount+Pr
emiumMode+RiskClass+IssueAge, 
family=poisson(),data=lapseData) 
summary(Model1) 
 

# include a cross term to improve the model 
Model2 <- 
glm(LapsedN~offset(log(Exposure))+FaceAmount+Pr
emiumMode+RiskClass+IssueAge+PremiumMode:Iss
ueAge, family=poisson(),data=lapseData) 
 

anova(Model1,Model2) 
 

# 4. predicted values 
lapseData$pred <-predict(Model1,lapseData, 
type="response") 
 

# 5. prepare data 
byPred <- aggregate(pred ~ 
PremiumMode+RiskClass, data = lapseData, FUN 
= sum) 
byObsv <- aggregate(LapsedN ~ 
PremiumMode+RiskClass, data = lapseData, FUN 
= sum) 
AERatio <- byObsv[,3]/byPred[,3] 
 

#make plot 
plot(AERatio,xlab="PremiumMode+RiskClass", 
ylab="AE Ratio",xaxt='n',ylim=c(0.9,1.1),pch=18) 
title("A/E vs. Premium Mode and Risk Class") 
axis(1, at=1:4,labels=c("NS-Annual","NS-
Monthly","SM-Anual","SM-Monthly"), las=0) 
abline(1,0,col="red") 
 

# 6. export the data to a csv file 
write.csv(lapseData,"modelDataFile.csv") 
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Example 

 Final results with detailed 

model were published by 

SOA 

 In SOA website 

 More focus on traditional 

analysis with PM as 

supplement 

 PM can add more values 

than this? 
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Application 

• Policyholder Behavior in the Tail 
– Causes and Effects 

 

• Alternatives to “Cliff” Premium Jump 
– Term Tail Rescue Options 
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Considerations 
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 Data 

 #1 issue in PM, just as in traditional study 

 Understand, clean and process 

 Missing values; grouping of categories 

 Too much data, in “big data” territory (nice problem to have) 

 Model 

 A simple model is always better than a complicated one 

 Over-fitting issue 

 Validation procedure 

 Actuaries are data expert on insurance business 

 Unique position to take up PM for actuarial work 

 Need more training/study on modeling 
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Lapse Model 

 In response to SOA RFP 

on PM application in 

insurance, a separate 

research paper was 

published 

 Specifically target PM 

application 

 A full lapse model for PLT 

life product 

 Not only a industry 

model/table for PLT lapse 

rates, but also an 

educational document  
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Lapse Model 

 Appendix of the report include an example 

 Step-by-step on how to build a real lapse model in R 

 A sample data file and R script file are include 

 All can be downloaded from SOA website 


