

Loss Reserving Using ML Techniques

Parin Kalra Rohit Sahni

> Session -C5 Dated - 05/03/2019

Table of Contents

Background Introduction to ML Techniques Approach Data Structure Modeling Testing Way Forward Q&A

Background

- Claims reserving is typically performed on aggregate claim data using familiar reserving techniques such as the chain ladder method & Bornheutter Ferguson Method.
- Rich data about individual claims is often available but is not systematically used to estimate ultimate losses.
- > Increasing focus on more insights and better accuracy.
- > Do we have techniques to unlock these benefits?

Machine Learning – Approach for Next Generation

Approach

In this presentation we introduce a reserving framework that leverages GBM approach of machine learning to incorporate rich granular information.

4th - 6th March, 2019 | Mumbai, India

5

Data Structure - Overview

- Simulated Dataset for Auto Property Damage claims
- Sample of 10,000 observations

Data Fields:

Claimant Characteristics	Dates	Amounts
Driver's Age, Vehicle Age	Underwriting Date	Payments
Driver's Gender	Accident Date	Case Estimate
Vehicle Value	Reporting Date	Incurred Amount

- Claimant Characteristics Categorical fields distributed randomly
- > Dates:
 - ➤ Underwriting Date T₀ (Randomly Between 2010 & 2015)
 - > Accident Date T_1 (T_{0+} 15 days < T_1 < T_{0+} 365 days)
 - Reporting Date T₂ (T₁ + 1 days <T₂< T₁ + 200 days, capped till end of 2017)
- > Amounts:
 - Incurred Amount at current Lag Using Decision Tree

Data Structure - Assumptions

Data Structure - Assumptions

- Claim Severity Log Normal Distribution
- Development Lag Capped at 5 years

In	dustry LDFs	_	Time Series Snapshot			
Development Lag	Incurred LDFs	Claim Number	Development Lag	Incurred Amount		
1	1.177036	1	0	10,000		
2	1.133256	1	1	14,000		
3	1.16638	1	2	15,000		
4	0.997724	1	3	14,500		
5	0.997419					

20th Global Conference of Actuaries 4th - 6th March, 2019 | Mumbai, India

Data Structure - Assumptions

Development Lag	Payment Pattern	Payment LDFs
0	45% - 55%	-
1	55% - 65%	1.522862
2	65% - 75%	1.189733
3	75% - 85%	1.176562
4	85% - 95%	1.001701
5	95% - 100%	1.001395
>= 6	100%	1.00000

Data Structure - Snapshot

٠

Claim Number	Driver Age	Driver Gender	Vehicle Value	Vehicle Age	UW Date	Loss Date	Reporting Date	Lag	Payment	Case Estimate	Incurred Amount
1	12	F	5	6	12/9/2014	12/9/2014	3/4/2016	0	0	63,313	63,313
1	12	F	5	6	12/9/2014	12/9/2014	3/4/2016	1	35,805	39,350	75,155
2	10	Μ	4	9	2/10/2013	8/6/2013	12/15/2013	0	0	31,959	31,959
2	10	Μ	4	9	2/10/2013	8/6/2013	12/15/2013	1	25,030	12,907	37,937
2	10	Μ	4	9	2/10/2013	8/6/2013	12/15/2013	2	38,117	6,535	44,653
2	10	Μ	4	9	2/10/2013	8/6/2013	12/15/2013	3	45,350	5,254	50,603
2	10	F	4	9	2/10/2013	8/6/2013	12/15/2013	4	53,357	5,666	59,022

•

Modeling- GBM Approach

Report Year	Lag	Actual Values	Predicted Values	Residual
2010	7	2000	900	1100
2012	5	1562	1200	362
2016	1	30000	25000	5000
2010	7	5600	6500	-900
2013	4	2230	1800	430
2015	2	9050	8000	1050
2016	1	6000	4500	1500

Note: The figures used in this slide are purely for representation

GBM Approach (Contd.)

Report Year	Lag	Residual
2010	7	1100
2012	5	362
2016	1	5000
2010	7	-900
2013	4	430
2015	2	1050
2016	1	1500

nstitute of Actuaries of India

4th - 6th March, 2019 | Mumbai, India

Note: The figures used in this slide are purely for representation

GBM Approach (Contd.)

Actual values	Predicted Tree 2	Residual Tree 1	Residual Tree 2	••
2000	1200	1100	800	
1562	1262	362	300	
30000	28000	5000	2000	
5600	6150	-900	-550	
2230	2030	430	200	
9050	8300	1050	750	
6000	5100	1500	900	

Each decision tree will reduce the residuals from the previous trees. Therefore, by constructing an efficient number of trees we can minimize the error.

> 20th Global Conference of Actuaries 4th - 6th March, 2019 | Mumbai, India

Note: The figures used in this slide are purely for representation

Modeling

Dependent varia	able	Independent va	ariables	,	Dependent var	riable	Independent variables
Incurred Amount	Case_lag	Payment_lag	Lag	The model predicts incurred	Payment	Lag	Predicted Incurred Amount
59,081	293	58,941	5	at each successive lag	59020	5	60220
59,234	528	58,841	4	leading to an ultimate incurred for each claim.	58900	4	59180
59,369	890	50,011	3		51,100	3	59100
50,900	2,880	42,035	2		41700	ວ ງ	51000
44,915	10,557	27,603	1		41/90	Ζ	51000
38,159	32,147	0	0		27,200	1	43,400

Validation & Results

- Validation Dataset Multiple data sets (Closed claims, Claims at lag 1)
- Root Mean Square Error (RMSE) of 704 is obtained i.e. on an average predicted deviates from actual ultimate by 704.
- The graph suggests claim size distribution obtained through GBM closely matches the actual distribution (Closed claims).

(**3**) Hunding (Actual 80,000 Ultimate Incurred Predicted 60,000 40,000 20,000 0 20% 40% 60% 0% 80% 100% 120%

Percentiles

Actual versus Predicted Ultimate Incurred

Validation & Results (contd.)

Below table compares Ultimates from GBM and Chain Ladder methodologies (Claims at lag 1)

Predicted								
Report Year	GBM	Chain Ladder	Diff(%)					
2010	7,418,500	7,410,492	0.11%					
2011	26,038,821	26,032,027	0.03%					
2012	28,334,693	28,263,852	0.25%					
2013	27,214,391	27,204,338	0.04%					
2014	25,108,582	25,040,267	0.27%					
2015	23,972,127	24,169,841	-0.82%					
2016	2,171,166	2,232,198	-2.81%					

- Extend our analysis to new claim types (Bodily Injury, CAT Claims) within auto Line of Business.
- Extend our analysis to other Lines of Business.
- We can consider modeling based on an amalgamation of multiple machine learning techniques as an extension of current GBM model.
- We have not explicitly considered the impact of inflation, claim handling costs, & exposure details in the model.
- ➤ How do we account for reopened claims?

20th Global Conference of Actuaries

4th - 6th March, 2019 | Mumbai, India

