

Mortality Improvement

Murshid Kuttihassan

VP and Actuary, MetLife Noida

March 2019

Supercentenarian (age>110)

Approximately 1 in 1000 Centenarians become Supercentenarians

Emma Morano 29 November 1899 – 15 April 2017

- Before her death at 117, Emma was the last living person born in the 1800s. She remains the oldest Italian ever.
- Emma credited her longevity success in part to eating raw eggs, cookies, staying single, and positive thinking.

1	Life, Annuity, & Health Blocks
2	Understanding the Past & Present
3	Framing the Future – Current Trends
4	Modeling Approaches

Changing Life Expectancy

Three Different Country Experiences

Life Expectancy (Males, 1960 - 2016)

https://data.worldbank.org/indicator/SP.DYN.LE00.MA.IN?name_desc=false

Life Insurance Mortality Considerations

1 Underwriting for Mortality Risk is Changing in Life Insurance

2 Quicker, Paperless, & Less Invasive Underwriting Alternative Sources for Health Information

3 Net Amount at Risk Is Significant (e.g. Pandemic PV impact)

Annuity & Pension Mortality Considerations

- High-Level Risk Assessment on Group & Pension Business
 - No Underwriting for Retail Annuities

- 2 Pension Transfer Market Large Blocks of Liability Being Transferred In Single Transactions
- Longevity Risk is a "Slow Bleed" Risk that Can Emerge Over Time
 Perpetuity Value is an Upper Bound on PV (interest-rate sensitive)
- 4 Longevity Risk & Mortality Risk Can Be Somewhat Offsetting

Health & Disability Morbidity Considerations

1 Morbidity and Mortality are Related but Difficult To Correlate

2 Costs are Driven by the Length and Severity of Sickness

3 Some Liabilities Can Be Hard to Invest For and Predict (LTC)

Historical Mortality Improvement

Life expectancy, 2015

Shown is period life expectancy at birth. This corresponds to an estimate of the average number of years a newborn infant would live if prevailing patterns of mortality at the time of its birth were to stay the same throughout its life

Clean Water Sanitation Vaccinations Child Mortality Improvement Smoking Cessation Improved Work Environments Statins & Other Drugs Rise in Wealth

20th Century HISTORICAL DRIVERS

https://ourworldindata.org/life-expectancy (CLIO-INFRA TO 1949; UN POPULATION DIV FOR 1950 TO 2015)

U.S. Historical Mortality Improvement

"Cohort Effects" Seen Along a 45° Diagonal

MP-2018; Males

The vertical dashed white line on the heat map is the boundary between the historical and projected rates, and the thin vertical gray lines indicate the 2018 rates.

Mortality Improvement Scales at a Glance

The MP Pension Mortality Improvement Rate Varies by Calendar Year

U.S. Mortality Improvement Slowing

Recent Years Have Even Shown a Mortality Increase

1.400 1,300 1.200 Deaths per 100,000 1,100 1,000 900 800 700 600 500 ŝ \$ \$ \$ Male emale Both

AGE-ADJUSTED MORTALITY 1999-2017

"US Population Mortality Observations - Updated with 2017 Experience", Society of Actuaries, January 2019, https://www.soa.org/Files/resources/research-report/2019/us-population-mortality-observations.pdf

Experience Varies by Age and Time Period

U.S. 2016 - 2017

U.S. 1999 - 2017

"US Population Mortality Observations - Updated with 2017 Experience", Society of Actuaries, January 2019, https://www.soa.org/Files/resources/research-report/2019/us-population-mortality-observations.pdf

Future Life Expectancy by Country

Future Life Expectancy More Relevant For Insurance Than L.E. at Birth

19.5 ___ 18.5 Chile 🕨 🛑 Japan 17.5 - UK US – Brazil 16.5 15.5

Life Expectancy for 65 year-old Male

OECD Health Database <u>https://stats.oecd.org/index.aspx?DataSetCode=HEALTH_STAT</u>

U.S. Population Study

COD PROPORTION OF DEATHS BY AGE GROUP

"US Population Mortality Observations - Updated with 2017 Experience", Society of Actuaries, January 2019 <u>https://www.soa.org/Files/resources/research-report/2019/us-population-mortality-observations.pdf</u> Murphy SL, Xu JQ, Kochanek KD, Arias E. Mortality in the United States, 2017. NCHS Data Brief, no 328. Hyattsville, MD: National Center for Health Statistics. 2018., Human Mortality Database www.mortality.org

Improvements in Fighting Disease

Similar Improvement Trends for Females

Male Cardiovascular Deaths Per 100,000 (Age Standardised)

OECD Health Database <u>https://stats.oecd.org/index.aspx?DataSetCode=HEALTH_STAT</u>

Improvements in Fighting Disease

Similar Improvement Trends for Females

Chile 🛑 Japan – UK US Brazil

Male Cancer Deaths Per 100,000 (Age Standardised)

OECD Health Database <u>https://stats.oecd.org/index.aspx?DataSetCode=HEALTH_STAT</u>

Mortality by Income Study

Median Household Income by County

U.S. CENSUS BUREAU 2008 COUNTY MEDIAN HOUSEHOLD INCOME ESTIMATES

"US Population Mortality Observations - Updated with 2017 Experience", Society of Actuaries, January 2019 <u>https://www.soa.org/Files/resources/research-report/2019/us-population-mortality-observations.pdf</u> Murphy SL, Xu JQ, Kochanek KD, Arias E. Mortality in the United States, 2017. NCHS Data Brief, no 328. Hyattsville, MD: National Center for Health Statistics. 2018.

Mortality by Income Study

Counties with the Highest Median Household Income

TOP 15% TO ALL COUNTIES MORTALITY RATIO

"US Population Mortality Observations - Updated with 2017 Experience", Society of Actuaries, January 2019 <u>https://www.soa.org/Files/resources/research-report/2019/us-population-mortality-observations.pdf</u> Murphy SL, Xu JQ, Kochanek KD, Arias E. Mortality in the United States, 2017. NCHS Data Brief, no 328. Hyattsville, MD: National Center for Health Statistics. 2018.

Mortality by Income Study

Counties with the Lowest Median Household Income

BOTTOM 15% TO ALL COUNTIES ALL AGES MORTALITY RATIO

"US Population Mortality Observations - Updated with 2017 Experience", Society of Actuaries, January 2019 <u>https://www.soa.org/Files/resources/research-report/2019/us-population-mortality-observations.pdf</u> Murphy SL, Xu JQ, Kochanek KD, Arias E. Mortality in the United States, 2017. NCHS Data Brief, no 328. Hyattsville, MD: National Center for Health Statistics, 2018.

Opioid Epidemic

AGE-ADJUSTED MORTALITY 1999-2017

"US Population Mortality Observations - Updated with 2017 Experience", Society of Actuaries, January 2019 <u>https://www.soa.org/Files/resources/research-report/2019/us-population-mortality-observations.pdf</u> Rudd RA, Seth P, David F, Scholl, L. Increases in drug and opioid overdose deaths—United States, 2000–2015. MMWR Early Release 2016;64:1378–82. CrossRefPubMed

Life Expectancy Updates

U.S. Statutory Reserves Have Conservatism Built In (~85th Percentile)

	2018 Cohort Life Expectancies (Complete)					
	Females			Males		
Projection Scale \rightarrow	MP-2017	MP-2018	% Change	MP-2017	MP-2018	% Change
Age						
25	64.39	64.23	-0.26%	61.78	61.49	-0.47%
35	53.63	53.48	-0.28%	51.10	50.86	-0.46%
45	42.95	42.83	-0.29%	40.48	40.30	-0.44%
55	32.47	32.35	-0.36%	30.12	29.97	-0.50%
65	22.68	22.61	-0.33%	20.71	20.60	-0.51%
75	14.34	14.29	-0.34%	12.89	12.84	-0.40%
85	7.68	7.66	-0.25%	6.75	6.73	-0.34%

Based on these assumptions, age-65 cohort life expectancy decreased slightly less than one month for females and slightly more than one month for males.

"US Population Mortality Observations - Updated with 2017 Experience", Society of Actuaries, January 2019 https://www.soa.org/Files/resources/research-report/2019/us-population-mortality-observations.pdf

Life Expectancy Related to Fighting Disease (U.S.)

At Birth...

31% chance of dying from heart disease (or 41% from a "major cardiovascular" disease)22% chance of dying from cancer

<u>Age</u>	Curing Heart Disease
55-60	25.6 => 30.9 (+5.3)
60-65	21.6 => 26.7 (+5.1)
65-70	17.8 => 22.8 (+5.0)
70-75	14.3 => 19.1 (+4.8)
75-80	11.1 => 15.7 (+4.6)
80-85	8.4 => 12.7 (+4.3)

Curing Cancer

25.6 => 28.4 (+2.8) 21.6 => 24.1 (+2.5) 17.8 => 19.9 (+2.1) 14.3 =>16.0(+1.7) 11.1 => 12.4 (+1.3) 8.4 => 9.3 (+0.9)

CDC National Vital Statistics Report https://www.cdc.gov/nchs/data/nvsr/nvsr64/nvsr64_02.pdf

Future Mortality Improvement

Framing the Future

2

3

Extrapolation, Simulation, and Alternative Approaches

How Comp	ex Should Your	Model Be?

(Group vs. Individual Level, Multi-Decrement Cause of Death, Improvement Timelines)

Experience Takes Years to Emerge

(Human Lives are Long Compared to Animal Studies)

Alternative Views of the Future

(Improvement Plateau vs. Medical Breakthroughs)

4 Simulations & Scenario Testing Can Offer Insight

20th Global Conference of Actuaries

4th - 6th March, 2019 | Mumbai, India

THANK YOU