## ACTUARIAL EXAMINATIONS

## PREPARING FOR ACTUARIAL EXAMS PROBLEMS

- Work load - limited time to focus on exams
- No ready guidance, coaching, classroom training
- Different background
- Competitive set-up - questions expected to be just more than basic
- Limited time during the exam to think and write and complete


## EXAM GUIDES - SOLUTION TO THE PROBLEM

- Active study - e.g. understand each word/expression in a mathematical definition or understand the application of the concept
- Make your own notes while studying
- Maintain regularity
- Browse through as many sample questions and solutions as possible questions and solutions of previous exam diets
- Focus on a wider scope, instead of just syllabus material - some of the materials have underlying concepts which involve subjects covered in earlier courses
- Study supplementary course materials e.g. relevant references - Options, Futures and Other Derivatives by John C. Hull
- Practice writing under mock exam situation


## TESTING CANDIDATES

## - What do examiners expect ?

o Know the book work well
o Understand the concepts well to be able to apply - reasonable and logical attempt always gets you marks!
o Make reasonable assumptions if you need to attempt a question rather than just leave it un-attempted!
o Although you won't be tested directly on underlying concepts from earlier courses, you are expected to demonstrate your understanding
o You are expected to appreciate the specific section where a question has been asked- the attempt should be triggered by that
o Clear writing - please work on your hand writing!!

## USEFUL TIPS

## - Interpretation of use of language in a question

o Understand the difference between "list" and " discuss"
o Carefully study the application of "alternate" approach - you are expected to deduce the solution using an alternate approach compared to one you have already demonstrated - don't just repeat!

## USEFUL TIPS

## - Interpretation of marks allocations

o Try to assign marks yourself to a question - example: you are expected to describe a mathematical expression in simple sentence depending on marks allocated
o A computation in a sub part of same question might be repeated with different parameters but lower marks - think if you can deduce the computation from a standard equation rather than working it out from first principle again
o Don't skip steps: show computations clearly as marks are allocated for all computations

## USEFUL TIPS

## Example: May 2014

A stock price is currently Rs.25. It is known that at the end of every month, the stock price either goes up or goes down by Rs.2. The risk free interest rate is $10 \%$ per annum with continuous compounding. Suppose $\mathrm{S}_{\mathrm{T}}$ is the stock price at the end of two months.

Define $X_{t}=S_{t}{ }^{2}$. What is the value of a derivative that pays off $X_{T}$ at the end of 2 month? (5)

## USEFUL TIPS

Solution: May 2014

|  |  | Stock price | 25 |
| :---: | :---: | :---: | :---: |
|  | 841 | u | 1.08 |
|  |  | d | 0.92 |
|  | 625 | $r$ | 10\% |
|  |  | t | 0.0833 |
| $-21$ | 441 | $p$ | 0.5523 |
|  |  | d | 0.4477 |
|  |  | $e^{-2 r / 12} *\left[p^{2} f u u+2 p(1-p) f u d+(1-p)^{2} \mathrm{fdd}\right]$ | 643.1981 |

[^0]
## USEFUL TIPS

## Example: May 2013

The price of a non-dividend paying share goes up 5\% or down 3\% over each month. Assume a monthly risk-free rate (continuously compounded) of $1.5 \%$. Using the two-period binomial tree model calculate each of the following:
i. Value of a two month European call with a strike price of Rs. 700 and current share price of Rs. 665 (4)
ii. Value of a two month European put with the same strike price (3)


## USEFUL TIPS

Solution (ii): May 2013

|  |  | Stock price | 665 |
| :---: | :---: | :---: | :---: |
| $7^{733.1}$ | 0 | u | 1.05 |
|  | 22.7 | d | 0.97 |
|  |  | $r$ | 1.5\% |
|  |  | t | 1 |
|  | 74.3 | p | 0.5639 |
| 625.7 |  | d | 0.4361 |
|  |  | $e^{-2 r} *\left[p^{2} f u u+2 p(1-p) f u d+(1-p)^{2} \mathrm{fdd}\right]$ | 24.5467 |


| Payoff diagram | 2 |
| :--- | :--- |
| Formula and computation of option value |  |

## USEFUL TIPS

## Example: May 2014

1. Define martingales in discrete time (2)

- A discrete time stochastic process $X_{0}, X_{1}, X_{2} \ldots$ is said to be a martingale if $E\left[I X_{n} I\right]$ $<\infty$ for all $n$, and $E\left[X_{n} \mid X_{0}, X_{1}, X_{2} \ldots, X_{m}\right]=X_{m}$ for all $m<n$. (1)
- In other words, the current value $X_{m}$ of a martingale is the optimum estimator of its future value (1)

2. State Ito's Iemma. (2)

- Ito's Iemma states that for an Ito drift-diffusion process $X_{t}$, satisfying stochastic differential equation $d X_{t}=\mu d t+\sigma d W_{t}$ where $W_{t}$ is a Wiener process and any twice differentiable scalar function $f(t, x)$ of two real variables $t$ and $x$, one has

$$
d f\left(t, X_{t}\right)=\left(\frac{\partial f}{\partial t}+\mu \frac{\partial f}{\partial x}+\frac{1}{2} \sigma^{2} \frac{\partial^{2} f}{\partial x^{2}}\right) d t+\sigma \frac{\partial f}{\partial x} d W_{t}
$$

## USEFUL TIPS

## Example: May 2013 - Application of knowledge on statistics

Let $B_{t}, t>=0$ be Standard Brownian motion with $B_{0}=0$
Show that $\exp \left(23 B_{t}-529 t / 2\right)$ is also a martingale. (4)

## Example: May 2014 - Application of knowledge on statistics

A stock price follows geometric Brownian motion with an expected return of $16 \%$ and a volatility of $35 \%$. The current price is Rs. 254. What is the probability that a European call option on the stock with an exercise price of Rs. 258 and a maturity date in six months will be exercised?
What is the probability that a European put option on the stock with the same exercise price and maturity will be exercised? (3+1)

## USEFUL TIPS

## Solution Hint

## Application of moment generating function can make life easy

$B_{t}=B_{t}-B_{s+} B_{s}$ and $B_{t}-B_{s} \sim N(0,(t-s))$ and $E\left(\exp \left(t^{\prime} z\right)\right)=\exp \left(t^{\prime 2} \sigma^{2 / 2}\right)$ where $z \sim N\left(0, \sigma^{2}\right)$

Statistical Distributions
Stock price $S_{t} \sim$ geometric Brownian motion i.e. $S_{t}=S_{0} e^{\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma W_{t}}$
$\Rightarrow \operatorname{Ln}\left(\mathrm{S}_{\mathrm{t}} / \mathrm{S}_{0}\right) \sim \operatorname{Normal}\left(\mu-\frac{\sigma^{2}}{2}, \sigma^{2} t\right)$
$\Rightarrow$

$$
\frac{\operatorname{Ln}\left(S_{t} / S_{0}\right)-\left(\mu-\frac{\sigma^{2}}{2}\right)}{\sigma \sqrt{t}}
$$

~ Normal $(0,1)$

Use $\mathrm{P}\left[\mathrm{S}_{\mathrm{T}}>\mathrm{K}\right]=\mathrm{P}\left[\mathrm{S}_{\mathrm{T}} / \mathrm{S}_{0}>\mathrm{K} / \mathrm{S}_{0}\right]=\mathrm{P}\left[\operatorname{Ln}\left(\mathrm{S}_{\mathrm{T}} / \mathrm{S}_{0}>\operatorname{Ln}\left(\mathrm{K} / \mathrm{S}_{0}\right)\right]\right.$

## USEFUL TIPS

## Example: May 2014

Suppose $X_{1}, X_{2}, \ldots$ are i.i.d with mean $\mu$. Show that $Z_{n}=\sum_{i=1}^{n}\left(X_{i}-\mu\right)$
is a martingale (2)

Tentative Approach: Martingale is a process with no drift. Hence $\mathrm{E}($ expression $)=0$ which implies it is a martingale???!!
A mean zero process is not always a martingale!

Need to prove $E\left(Z_{n} \mid Z_{m}\right)=Z_{m}$
$E\left[\sum_{i=1}^{n}\left(X_{i}-\mu\right) \mid X_{m}, m<n\right]=E\left[\sum_{i=1}^{m}\left(X_{i}-\mu\right) \mid X_{m}\right]+E\left[\sum_{i=m+1}^{n}\left(X_{i}-\mu\right) \mid X_{m}\right]=E\left[\sum_{i=1}^{m}\left(X_{i}-\mu\right) \mid X_{m}, m<n\right]+0=Z_{m}$

## USEFUL TIPS

## - Time management

o Do not spend "extra" energy in just one question because you happen to know it - it won't get you "extra" marks
o Do not unnecessarily spend time doing the computations over and over again if those have not been explicitly asked- use smart techniques
o Read question carefully before answering - try to evaluate links in sub parts of a question


## QUESTIONS ?



THANK YOU


[^0]:    $\square$ Payoff diagram
    2
    $\square$ Computation of parameters 1
    $\square$ Formula and computation of option value 2

