7th Capacity Building Seminar In Health Insurance

Practical Aspects of Designing Morbidity table

Abhijit Pal

Head of Pricing, Actuarial Research and Innovation
Munich Re India Branch
$13^{\text {th }}$ December 2019

Sumit Ramani
Consulting Actuary
Actuaria Consultants

Anshul Mittal
Assistant Vice President-Actuarial
Apollo Munich Health Insurance Co. Ltd

Agenda

$>$ What is Morbidity
$>$ Calculation of Exposed to Risk
$>$ Graduation / Smoothening of Incidence Rates
> Practical Considerations
$>$ Example of a Multifactor Analysis of Incidence Rates

What is Morbidity

$>$ Morbidity is the rate at which disease occurs in a group of people over a given period of time
$>$ In actuarial parlance, it is represented as $\mathrm{i}(\mathrm{x})$ which represents the probability of sickness or injury for an individual aged x between time period t and $\mathrm{t}+1$.
> A morbidity table provides morbidity rates that may vary by multiple factors / variates

Morbidity rates may vary by..

$>$ Age
> Gender
$>$ Duration
> Underwriting - Short Form / Long Form; Med / Non-Med
> Geographic location
> Smoker Status
> Product type
> Disease type
> Distribution channel
> Occupation
$>$ Activity of Daily Living or Daily Working
$>$ Waiting period / Survival period
> Rider / Standalone
> Claim triggers (ADL / ADW) etc

Morbidity tables for various products

- Fixed (Defined) Benefit products
> Critical Illness
> Hospital Cash Benefit / Surgical Cash Benefit
> Total and Permanent Disability due to accident and/ or sickness
> Income Protection
$>$ Long-Term Care
- Indemnity Products
$>$ In patient hospitalization
$>$ Out patient / day care

Today's Exercise...

Is only limited to calculation of crude and smoothed incidence rates / morbidity rates for inpatient hospitalization products

We intend to cover the following aspects:
$>$ Calculation of Exposed to Risk (exposure)
$>$ Calculation of Crude incidence rates
$>$ Smoothening of rates
$>$ Different approaches for graduation
$>$ Univariate / Bivariate analysis of incidence rates
$>$ Multifactor example to unwind the effect of more than one variate

Calculation of Exposed To Risk

\&

Derivation of crude and smoothed morbidity rates

Graduation techniques

Some of the graduation techniques

1. Whittaker - Henderson
2. Cubic Spline
3. Heligman Pollard

Whittaker - Henderson

The Whittaker -Henderson method attempts to graduate the crude rates by obtaining a balance between the adherence to data and the smoothness of the rates.

The graduated rates are obtained by minimizing Q below:

$$
Q=\sum_{j=0}^{N} w_{j}\left(q_{x+j}-\hat{q}_{x+j}\right)^{2}+\sum_{j=0}^{N-3} K_{j}\left(\Delta^{3} q_{x+j}\right)^{2}
$$

Where $\quad w_{j}=\frac{N \cdot E_{x}}{\sum E_{x}}$ are the weights that assign higher weights to ages with higher exposure
And $\quad K_{j}$ are smoothing coefficients
\hat{q}_{x} - Crude Rate
q_{x} - Graduated Rate

Whittaker - Henderson

Ensures that the graduated rates are as close to crude rates as possible

$Q=\sum_{j=0}^{N} w_{j}\left(q_{x+j}-\hat{q}_{x+j}\right)^{2}+\sum_{j=0}^{N-3} K_{j}\left(\Delta^{3} q_{x+j}\right)^{2}$

Ensures that the graduated rates are as smooth as possible

This method attempts to balance both these opposing objectives.

Cubic Spline

The Cubic Spline method fits a piecewise curve to the crude rates. It fits a smooth curve between each of the knots, which are predetermined age ranges selected to optimize the graduation process.

The graduated rates are obtained by minimizing Q below:

$$
Q=\sum_{j=0}^{N-1} w_{x+j}\left(q_{x+j}-\hat{q}_{x+j}\right)^{2}
$$

Where $\quad q_{x}=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\sum_{i=1}^{n} b_{i} G_{i}(x)$ is the cubic equation and

$$
G_{i}(x)=\left(x-x_{i}\right)^{3} \text { for } x \geq x_{i}
$$

$$
0.008
$$

$$
=0 \quad \text { for } x<x_{i}
$$

$$
0.006
$$

$$
q_{x}-\text { Graduated Rate }
$$

\hat{q}_{x} - Crude Rate
0.004
0.002

0
17

Heligman Pollard

The mortality law suggested by Heligman and Pollard is:

$$
\frac{q_{x}}{p_{x}}=A^{(x+B)^{C}}+D e^{-E(\ln x-\ln F)^{2}}+G H^{x}
$$

Where q_{x} is the probability of dying within 1 year for a person aged x exactly and
$p_{x}=1-q_{x}$
Each component represents a distinct component of mortality:

Component 1: Infant Mortality	
0.0014	
0.0012	
0.001	
0.0008	
0.0006	
0.0004	
0.0002	
0	- $20-40$
	$\begin{array}{lllll}0 & 20 & 40 & 60 & 80\end{array}$

Test of Graduated rates

Test	Purpose	Working	Criteria
Standardized Deviations Test	Testing Overall Goodness of Fit	Checks for normality of Standardized deviations	$z_{x}=\frac{(\text { Actual }- \text { Expected })}{\text { sqrt }(\text { Expected })}$ We expected z_{x} 's to follow Standard Normal Distribution
Chi-Squared Test	Testing Overall Goodness of Fit	Calculates sum of squares of differences between excepted and actual deaths	We expect $\sum z_{x}{ }^{2}$ to follow χ^{2} distribution (Degrees of freedom depend on the method of graduation)
Sign Test	Detecting Overall Bias	Calculates number of positive deviations of the graduated rate from the crude rates	$P=$ Count of Positive z_{x} values We expect P to follow Binomial distribution with parameters $(n, 0.5)$ where n is the number of observations
Grouping of Signs Test	Detecting Runs and Clumps	Calculates groups of positive deviations throughout the graduation	$G=$ Groups of Positive z_{x} We expect neither too many nor too few groups
Cumulative Deviations Test	Testing for Over graduation	Calculates overall deviation	$\text { Test statistic }=\frac{\sum(\text { Actual }- \text { Expected })^{2}}{\sum \text { Expected }}$
Serial Correlation Test	Testing for Over graduation	Calculates correlation between successive standardized deviations	Calculate correlation between successive z_{x} values. It is expected to follow $N(0,1 / m)$
Third Differences Test	Test for smoothness	Calculates the third order difference of the graduated rates	Find third difference ($\Delta^{3} q_{x}$) of the graduated rates. They are expected to be small and to move gradually.

Univariate / Bivariate Analysis of Morbidity Rates

First principle approach to unwind the effects of more than one variate

Thank you !!

