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Introduction 

The indicative solution has been written by the Examiners with the aim of helping candidates. 

The solutions given are only indicative. It is realized that there could be other points as valid 

answers and examiner have given credit for any alternative approach or interpretation which 

they consider to be reasonable. 

 

 

 

 

 

 

 

 

 

 



IAI                                                                                                                                                      CS2B-0524 

 

Page 2 of 10 
 

Solution 1: 

 

(i) 

• Informative censoring is likely to be present.  

• The deaths for an unknown reason may or may not have been from blood clots.  

• Even if the deaths for an unknown reason were not from blood clots, they are still likely 

to constitute informative censoring.  

• This is because, had these lives not died, they were likely to have been in poorer health, 

and hence more likely to suffer from blood clots, than those remaining.  

(3) 

 

      (ii) 

install.packages("survival") 

library(survival) 

datamain<-read.csv(file.choose()) 

>ST<-ifelse(datamain$Status==2,1,0) 

>datanew<- cbind(datamain, ST) 

>tail(datanew,20) 

     Life Drug Age co_morbidity Status Time ST 

2481 2481    1   1            0      0   30  0 

2482 2482    1   1            0      0   30  0 

2483 2483    1   1            0      0   30  0 

2484 2484    1   1            0      0   30  0 

2485 2485    1   1            0      2   12  1 

2486 2486    1   1            0      0   30  0 

2487 2487    1   1            1      0   30  0 

2488 2488    1   1            1      0   30  0 

2489 2489    1   1            0      0   30  0 

2490 2490    1   1            0      0   30  0 

2491 2491    1   1            0      0   30  0 

2492 2492    1   1            1      0   30  0 

2493 2493    1   1            0      0   30  0 

2494 2494    1   1            0      0   30  0 

2495 2495    1   1            0      0   30  0 

2496 2496    1   1            1      2    8  1 

2497 2497    1   1            1      0   30  0 

2498 2498    1   1            0      0   30  0 

2499 2499    1   1            0      0   30  0 

2500 2500    1   1            0      0   30  0 

 

(1 mark for loading  the library, 3 marks for correct code and 2 mark for correct output.) 

(6) 

 

(iii) 

S = survfit(  

+              Surv(datanew$Time, datanew$ST)  

+              ~datanew$Drug)  

> plot(  

+       S,  

+       xlab = "Time",  

+       ylab = "Survival Function, S(t)",  

+       ylim=c(.98,1),  

+       col = c("blue", "red") ,  
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+       main = "Comparison of Kaplan-Meier Estimate for 2 groups--recipient of drug / not recip

ient of drug")  

> legend("topright", legend = c("No drug", "drug") , 

+        col = c("blue", "red") 

+        , pch =7) 

 
(6) 

(iv)  

• Individuals who have not been administered drug have a lower possibility of blood clots 

within a 30 day period than Individuals who received drug.  

• Any effect of drug occurs, if at all, occurs within the first 15 days. 

• The survival curves cross each other early in the curve. 

• In general, lines crossing each other may mean violation of proportionality in hazard 

rate. Here, it may be insignificant due to small sample size and/or small number of 

events occurring. 

• However, analysis does not consider possibility of other factors affecting the results. 

(1 mark for each comment, max 4 marks) 

 

(v)  

H0: co-morbidity has no significant impact on blood clots along with vaccine indicator and age  

H1: co-morbidity has significant impact on blood clots along with vaccine indicator and age 

cox_1<-  

+ coxph(  

+ Surv(datanew$Time,datanew$ST)  

+        ~ datanew$Drug*datanew$Age,  

+        ties = "breslow") 

cox_2<-coxph(Surv(datanew$Time, 

+ datanew$ST)~datanew$Drug*datanew$Age*datanew$co_morbidity, ties = "breslow") 

L1<-cox_1$loglik[2] 

L2<-cox_2$loglik[2] 

2 *( L2- L1) 

[1] 15.50062 
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qchisq(0.95, 4) 

[1] 9.487729 

 

Conclusion: We reject Ho as the effect is statistically significant and conclude that co-morbidity 

along with drug and age has an impact on blood clots. 

        (7) 

[26] 

Solution 2: 

(i) 

 

set.seed(1234) 

>  

> V = matrix(runif(60000), ncol = 3) 

> head(V) 

          [,1]      [,2]       [,3] 

[1,] 0.1137034 0.0346164 0.04571879 

[2,] 0.6222994 0.8765384 0.03803062 

[3,] 0.6092747 0.7347251 0.16973801 

[4,] 0.6233794 0.6218362 0.15442048 

[5,] 0.8609154 0.6978030 0.25847399 

[6,] 0.6403106 0.5783307 0.86357008 

 

(3) 

(ii) 

a = 0  

b = 0.5 

c = 0.5 

n = 20000  

w1 = vector(length = n)  

w2 = vector(length = n) 

w = vector(length = n)  

defaultprob = vector(length = n)  

default = vector(length = n) 

for (i in 1:n) {  

+ w1[i] = -1 *(V[i, 1] <= 1/3) + 1 * (V[i, 1] > 2/3)  

+ w2[i] = 2 * (V[i, 2] - 0.5)  

+ w[i] = a + b * w1[i] + c * w2[i]  

+ defaultprob[i] = exp(w[i]) /(1 + exp(w[i]))  

+     default[i] = 1 * (V[i, 3] <= defaultprob[i])  

+ } 

sample=data.frame("w1" = w1, "w2" = w2, "default" = default) 

head(sample) 

 

w1         w2 default 

1 -1 -0.9307672       1 

2  0  0.7530768       1 

3  0  0.4694501       1 

4  0  0.2436723       1 

5  1  0.3956060       1 

6  0  0.1566614       0 

(10) 

 

(iii)  

mean(defaultprob) 
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[1] 0.5006632 

 

The expected probability of customer default is 0.5006632 

 

The answer is not likely to be realistic as the mean default probability of their potential 

customers would be desired to be significantly less than 0.5. A negative value of a may reduce 

the expected probability of default. 

(4) 

 

(iv)  

set.seed(1234) 

V = matrix(runif(60000), ncol = 3) 

a =- 0.6  

> b = 0.5 

> c = 0.5 

> n = 20000  

> w1 = vector(length = n)  

> w2 = vector(length = n) 

> w = vector(length = n)  

> defaultprob = vector(length = n)  

> default = vector(length = n) 

>  

>  

> w1 = -1 *(V[,1] <= 1/3) + 1 * (V[,1] > 2/3) 

> w2 = 2 * (V[,2] - 0.5) 

> w = a + b * w1 + c * w2 

> defaultprob = exp(w) /(1 + exp(w))  

> default = 1 * (V[,3] <= defaultprob) 

mean(defaultprob) 

[1] 0.3627064 

The mean default probability has come down significantly as expected 

(4) 

 

(v) 

set.seed(1234) 

 V = matrix(runif(60000), ncol = 3) 

 a = 0 

 b = 0.5 

 c = 0.5 

 n = 20000  

  w1 = vector(length = n)  

 w2 = vector(length = n) 

  w = vector(length = n)  

  defaultprob = vector(length = n)  

  default = vector(length = n) 

  

 w1 = -1 *(V[,1] <= 1/3) + 1 * (V[,1] > 2/3) 

 w2 = 2 * (V[,2] - 0.5) 

 w = a + b * w1 + c * w2 

defaultprob = 0.5*exp(w) /(1 +0.5* exp(w))  

  

> default = 1 * (V[,3] <= defaultprob) 

> mean(defaultprob) 

[1] 0.3425714 
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The result has improved as the default probability has become reasonable. 

(4) 

         

(vi) actual = read.csv(file.choose()) 

>head(actual, 10) 

 

w1         w2        default 

1  -1  0.4842612       0 

2   1  0.8991797       0 

3   0 -0.2146289       0 

4   1 -0.7641544       0 

5  -1 -0.5532892       0 

6   1 -0.9808636       1 

7  -1 -0.8397735       0 

8  -1  0.5445384       0 

9   0  0.9868044       0 

10  1  0.3109878       1 

(2) 

 

(vii) 

#install.packages("rpart") 

library(rpart) 

 

a = 0 

b = 0.5 

c = 0.5 

n = 20000  

w1 = vector(length = n)  

w2 = vector(length = n) 

w = vector(length = n)  

defaultprob = vector(length = n)  

default = vector(length = n) 

for (i in 1:n) {  

  w1[i] = -1 *(V[i, 1] <= 1/3) + 1 * (V[i, 1] > 2/3)  

  w2[i] = 2 * (V[i, 2] - 0.5)  

  w[i] = a + b * w1[i] + c * w2[i]  

  defaultprob[i] = exp(w[i]) /(1 + exp(w[i]))  

  default[i] = 1 * (V[i, 3] <= defaultprob[i])  

} 

sample=data.frame("w1" = w1, "w2" = w2, "default" = default) 

 

tree = rpart(default ~ ., data = sample, method = "class") 

 

predict_defaults = predict(tree, actual, type = 'class') 

 

> head(predict_defaults, 20) 

 1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20  

 0  1  0  1  0  1  0  0  1  1  1  0  1  1  0  1  0  0  1  0  

Levels: 0 1 

(4) 

 

(viii) 

Confusion_matrix = table(actual$default,predict_defaults); 

>Confusion_matrix 

predict_defaults 
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     0  1 

  0 63 37 

  1  0 25 

(2) 

 

(ix) 

precision = Confusion_matrix[2,2] / sum(Confusion_matrix[,2]) 

>precision 

[1] 0.4032258 

recall = Confusion_matrix[2,2] / sum(Confusion_matrix[2,]); 

>recall 

[1] 1 

 

The precision percentage is 40.32% and the recall percentage is 100% 

(4) 

 

(x) 

• The recall percentage is the percentage of defaults that the model managed to identify. 

Here the model has performed well and has identified all 25 actual defaults. However, 

the model is currently not very precise. The precision percentage is the percentage of 

predicted defaults that are in fact actual defaults. The model has predicted far more 

defaults than was actually the case.  

 

• Hence, if this model had been used to approve the loans of these 125 customers, 30% 

of them would have not been approved for a loan even though they did not actually 

default. The model is therefore not commercially optimised.  

 

• This is in line with our conclusions from part (iii) i.e. that the probability of default in 

the specimen data used to train the model was unrealistically too high. 

 

• The Analyst could refine the parameters (a, b, c) used to construct the specimen data 

and re-train the model to improve it. Better still, further data could be gathered from 

the public domain, if available, and used to train the model to improve it.  

 

• Additionally, other decision tree models (e.g. bagged decision trees, random forests, 

boosted decision trees) may be investigated to see if a better fit can be obtained.  

 

• Alternatively, other classification machine learning models (e.g. naïve Bayes 

classification) should be investigated to see if a better fit can be obtained. 

 

• Additionally, the Analyst could change the approach from classification of loan 

default/not default to a probability of loan default approach and use some form of 

regression machine learning algorithm to predict the probabilities. 

(6) 

[43] 

Solution 3: 

(i)  

 

install.packages("fpp") 

library(fpp) 

consumption = usconsumption[ ,1]  

plot(consumption, ylab = "Changes in personal income") 
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(3) 

 

(ii)  

> acf(consumption, main = "ACF") 

 
pacf(consumption, main = "PACF") 
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(4) 

 

   (iii) 

 

model1 <- arima(x = consumption, order = c(3, 0, 0))  

model1  

 

Call: 

arima(x = consumption, order = c(3, 0, 0)) 

 

Coefficients: 

         ar1     ar2     ar3  intercept 

      0.2366  0.1603  0.1909     0.7533 

s.e.  0.0763  0.0774  0.0759     0.1153 

 

sigma^2 estimated as 0.3825:  log likelihood = -154.08,  aic = 318.16  

In this case, the equation of the model is:  

𝑋𝑡=0.7533 + 0.2366 𝑋𝑡−1 + 0.1603 𝑋𝑡−2 + 0.1909 𝑋𝑡−3 + 𝜀𝑡 
(4) 

(iv)  

income<-usconsumption[,2] 

# forecast from the AR(3) 

forecast1 <- fitted(model1) 

# fit and forecast linear regression 

> model3 <- lm(consumption ~ income, data = usconsumption) 

> forecast3 <- fitted(model3) 

# Calculate RMSE  

> n <- length(forecast1) 

> rmse1 <- sqrt( sum((forecast1 - consumption)^2)/n ) 

> rmse1  

[1] 0.6185039 

rmse3 <- sqrt( sum((forecast3 - consumption)^2)/n ) 
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> rmse3  

[1] 0.6236113 

(8) 

   

 (v) 

(a) 

It seems reasonable to consider a regression model with ARIMA which essentially blends the 

two models proposed in (iii) and (iv). 

 

(b) 

model4 <- arima(x=consumption, order = c(3, 0, 0), xreg = income) 

 

(c) 

> AIC(model4)  

[1] 300.58  

Hence model4 is better in terms of AIC  

> forecast4 <- fitted(model4)  

> rmse4 <- sqrt( sum((forecast4 - consumption)^2)/n ) 

  rmse4  

[1] 0.582791 

Hence, model4 fits the data better as measured by the RMSE 

The residuals from model4 look better as shown below. 

residuals4 <- residuals(model4)  

acf(residuals4,main="ACF of residuals of suggested model") 

 

 
(12) 

[31] 

 

 

********************* 

 


