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Introduction 

The indicative solution has been written by the Examiners with the aim of helping candidates. The 

solutions given are only indicative. It is realized that there could be other points as valid answers 

and examiner have given credit for any alternative approach or interpretation which they consider 

to be reasonable. 
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Solution 1:  

(i) 

a) > pbeta(0.8,5,1) - pbeta(0.2,5,1)                                      (1) 

 [1] 0.32736                                                        (1) 

 

b) > qbeta(0.65,5,1,lower= FALSE) or Alternate: qbeta(0.35,5,1

)                                                        

                                                                          (1) 

       [1] 0.8106131                                                     (1) 

                

(ii) 

> a=c(5,1,3) 

> b=c(1,5,3)                                                               

> skew=2*((b-a)/(a+b+2))*sqrt((a+b+1)/(a*b))                              (2) 

> skew 

[1] -1.183216  1.183216  0.000000                                         (1)  

              (3)   

 

Or Alternatively 

 

> skew1=2*((1-5)/(5+1+2))*sqrt((5+1+1)/5) 
> skew1 
[1] -1.183216 
 
> skew2=2*((5-1)/(1+5+2))*sqrt((5+1+1)/5) 
> skew2 
[1] 1.183216 
 
> skew3=2*((3-3)/(3+3+2))*sqrt((3+3+1)/9) 
> skew3 
[1] 0 

(3) 

                                          

(iii) 

> set.seed(421967)                                                      (0.5) 

> x1=rbeta(12000,5,1)                                                     (1) 

> hist(x1)                                                              (0.5)                            

> x2=rbeta(12000,1,5)                  

> hist(x2)                                                              (0.5) 

> x3=rbeta(12000,3,3) 

> hist(x3)                                                              (0.5) 

                                                 (3) 

         

(iv) 
 As Alpha is greater than 1 and Beta is equal to 1, the histogram is he

avily negatively skewed and strictly increasing as evident from the result obt

ained in (ii) above and from the shape of the graph. 

         (1) 

 As Alpha is equal to 1 and Beta is greater than 1, the histogram is he

avily positively skewed and strictly decreasing as evident from the result obt

ained in (ii) above and from the shape of the graph. 

         (1) 
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 As both the parameters alpha and beta are equal, the graph is roughly 

symmetrical as evident from the graph and the value of the skewness obtained   

in (ii) above. 

(1) 

(3) 

(v)  
> set.seed(421967) 
> x1_bar <-replicate (1200, mean(rbeta (12000,5,1)))                       
 
Or alternatively 

> set.seed(421967) 
> x1_bar=rep(0,1200) 
> for(i in 1:1200){x1<-rbeta(12000,5,1);x1_bar[i]<-mean(x1)}               

                                                    
  (3) 

       
> set.seed(421967) 
> x2_bar <-replicate (1200, mean (rbeta (12000,1,5))) 
 

Or alternatively 

> set.seed(421967) 
> x2_bar=rep(0,1200) 
> for(i in 1:1200){x2<-rbeta(12000,1,5);x2_bar[i]<-mean(x2)} 

             (1) 
> set.seed(421967) 
> x3_bar <-replicate (1200, mean(rbeta (12000,3,3))) 
              
 

Or alternatively 

> set.seed(421967) 
> x3_bar=rep(0,1200) 
> for(i in 1:1200){x3<-rbeta(12000,1,5);x3_bar[i]<-mean(x3)} 

             (1) 
(5) 

 

(vi)The distribution of sample mean is roughly symmetrical in all the three ca

ses irrespective of the values of the shape parameters (alpha and beta).These 

shape parameters(alpha and beta) do not significantly affect  the sample mean  

of large sample size, which is in line with the central limit theorem. Irrespe

ctive of the population distribution of the random variable from which the sam

ple is selected, for a large sample size the distribution of the sample means 

is approximately normal.    

              (2) 

                                                                         [20]  

Solution 2: 

(i)  

The given equation is  

      Maximum Systolic Blood Pressure = 100 + Age (in years) 

       It can be written as 

                 y = 100 + x 

                 y = 100 + 1*(x) 

                 y = α + βx 

                𝛼 = 100    𝑎𝑛𝑑  𝛽 = 1 
               (2) 
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(ii) 
 
> x=c(28, 37, 41, 52, 57, 49, 38, 25, 23, 48, 60, 55, 29, 43, 36, 50, 34, 40, 
26, 33) 
> y=c(132, 140, 155, 160, 167, 148, 128, 131, 118, 139, 149, 154, 117, 146, 1
42, 168, 144, 156, 114, 133) 
 
 
> plot(x,y)                                                                

(1) 

       
              (1) 
 
The age in years(x) and the systolic blood pressure(y) are positively correlat
ed. 

         (1) 
(3) 

 
 
(iii) 
 
> lm.result=lm(y~x)             (1) 

 

> abline(lm(y~x))                                                         (1) 

 
            (2) 

(4) 

 

(iv) 

>anova(lm.result) 
                                                         (1) 

Analysis of Variance Table 
Response: y 
          Df Sum Sq Mean Sq F value    Pr(>F)     
x          1 3082.9 3082.94  33.591 1.717e-05 *** 
Residuals 18 1652.0   91.78                       
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
                                                                          (1) 
 
From the above, it is clear that the slope parameter is significant. 
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(1) 

(3) 

(v) 

>summary(lm.result)                                                       (1) 
 
Call: 
lm(formula = y ~ x) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-15.485  -6.504   1.177   5.979  14.846  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)     
(Intercept)  96.4994     8.1460  11.846 6.21e-10 *** 
x             1.1331     0.1955   5.796 1.72e-05 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 9.58 on 18 degrees of freedom 
Multiple R-squared:  0.6511, Adjusted R-squared:  0.6317  
F-statistic: 33.59 on 1 and 18 DF,  p-value: 1.717e-05    

                                                                (1) 

The value of the estimates of the co-efficient are 

      Alpha(α) = 96.4994   Beta(β) = 1.1331                        (1)  

(3)                             

 

(vi) The values of alpha and beta are expected to be 100 and 1 respectively a

s per (i).  But empirical test results fetch the values as 96.4994 and 1.1331 

respectively, which is close to the expected values of 100 and 1 respectively

. Hence when empirically tested, we find that the claim made by the research 

about the maximum systolic blood pressure is valid. 

                                                                   (2) 

 

(vii) 

> cor(x,y,method="pearson") 
[1] 0.8069094 

           (1) 
 
> cor(x,y,method="spearman") 
[1] 0.8180451 
               (1) 
 
> cor(x,y,method="kendall") 
[1] 0.6105263 

                          (1) 

(3) 

 

(viii) 

      Pearson’s correlation co-efficient measures the strength of the linear r

elationship between the two variables, whereas Spearman Correlation method mea

sures the strength of monotonic but not necessarily linearity between two vari

ables. 

      Since Spearman considers the rank than the actual values, the value of t

he coefficient is less affected by extreme values/outliers in the data than Pe

arson’s Correlation Coefficient. Hence it is more robust. 

   Kendall’s correlation coefficient is considered to have better statistical 

properties when    the data set is small and have more tied ranks, though it c

onsiders the relative values between the data set and not actual values.  
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Generally, the value of Kendall’s coefficient is lower than the Spearman’s  

rank coefficient. 

    Based on the sample correlation coefficients calculated in part (vii), we 

conclude Spearman Rank Coefficient > Pearson’s Coefficient > Kendall’s Coeffi

cient 

                                                                   (4) 

(ix) 

𝐻0  : ρ = 1 

𝐻1 : ρ ≠ 1                                                          (1) 

 

> cor.test(x,y,method="pearson")                                          (1)                                       
 
 Pearson's product-moment correlation 
 
data:  x and y 
t = 5.7958, df = 18, p-value = 1.717e-05 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
 0.5667661 0.9206793 
sample estimates: 
      cor  
0.8069094                                                                 (1) 
 

p-value is 1.717e-05                                                      (1)  

 

 Since 95% confidence interval (0.5667661, 0.9206793) does not include 

the value 1, there is sufficient evidence to reject the hypothesis that there 

is perfect correlation between Age and Systolic Blood Pressure though there is 

strong positive correlation between the age and systolic Blood Pressure. 

(2) 

(6) 

[30] 

      

Solution 3:  
 
(i) > Firepolicies<-read_csv("Firepolicies.csv")    
                                                (1) 
 
 
(ii) 
a) 
 
>  Maha<-Firepolicies[Firepolicies$Location=="M",] 

> Maha_0_Claims<-Maha[Maha$Claimed == 0,] 

> ProporMaha_0_Claims<-nrow(Maha_0_Claims)/nrow(Maha) 

> ProporMaha_0_Claims 

[1] 0.7346939 

(3) 

b) 

>  Gujarat<-Firepolicies[Firepolicies$Location=="G",] 

>  Gujarat_0_Claims<-Gujarat[Gujarat$Claimed == 0,] 

>  ProporGuj_0_claims <-nrow(Gujarat_0_Claims)/nrow(Gujarat) 

> ProporGuj_0_claims 

[1] 0.5909091 

 (1) 

(iii) 

𝐻0(Null Hypothesis):  
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Proportion of No claims in the past one year in Maharashtra is equal  to Propo

rtion of NO Claims in the past one year in Gujarat 

 

𝐻1(Alternative Hypothesis): 

Proportion of No claims in the past one year in Maharashtra is NOT equal to Pr

oportion of NO Claims in the past one year in Gujarat 

         (1) 

 

> prop.test (c(nrow( Maha_0_Claims),nrow(Gujarat_0_Claims)),c(nrow(Maha),nrow
(Gujarat)),correct = FALSE) 
 

         (1) 
 
2-sample test for equality of proportions without continuity correction 
 
data:  c(nrow(Maha_0_Claims), nrow(Gujarat_0_Claims)) out of c(nrow(Maha), nr
ow(Gujarat)) 
X-squared = 2.1568, df = 1, p-value = 0.1419 
alternative hypothesis: two. sided 
95 percent confidence interval: 
 -0.04696637  0.33453595 
sample estimates: 
   prop 1    prop 2  
0.7346939 0.5909091                      

            (1)  
      

p-value is 0.1419         (1) 

 

At 95% confidence interval (-0.04696637, 0.33453595), which contains “0”, we h

ave insufficient evidence to reject null hypothesis and can conclude that ther

e is no significant difference between Maharashtra and Gujarat in respect of t

he proportion of No claims in the previous year.                      (1)   

                     (5) 

(iv) 

𝐻0(Null Hypothesis):  

Population mean of Textile Mills Claims is equal to Population mean of Transp

orters’ Godowns Claims  

 

𝐻1(Alternative Hypothesis): 

Population mean of Textile Mills Claims is NOT equal to Population mean of Tra

nsporters’ Godowns Claims  

(1) 

 
> Textile<-Firepolicies[Firepolicies$Occupancy=="TM",] 
 
> Transporter<-Firepolicies[Firepolicies$Occupancy=="TG",] 

(1) 

 
>  t.test(Textile$Claim.Size,Transporter$Claim.Size,var.equal=TRUE) 

(1) 

 
 Two Sample t-test 
 
data:  Textile$Claim.Size and Transporter$Claim.Size 

t = 7.877, df = 103, p-value = 3.586e-12 

alternative hypothesis: true difference in means is not equal to 0 

95 percent confidence interval: 
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 24.27889 40.61871 

sample estimates: 

mean of x mean of y  

 98.07843  65.62963                       

         (1) 

 p-value is 3.586e-12                                             (1)  

 

 At 95% Confidence interval as the confidence interval (24.27889 40.618

71) does not contain the value 0, we have sufficient evidence to reject Null H

ypothesis and conclude that there is significant difference between the averag

e claim size of Textile Mills and Transporters’ Godowns. 

(1)  

(6) 

 

(V) 

(a) 

> model1=glm(Firepolicies$Claimed~Firepolicies$Claim.Size+Firepolicies$Locati

on,family = binomial())             (2) 

           

> summary(model1)             (1) 

             

Call: 
glm(formula = Firepolicies$Claimed ~ Firepolicies$Claim.Size +  
    Firepolicies$Location, family = binomial()) 
 
Coefficients: 
                         Estimate Std. Error z value Pr(>|z|)   
(Intercept)             -0.840330   0.453954  -1.851   0.0642 . 
Firepolicies$Claim.Size  0.003711   0.004935   0.752   0.4521   
Firepolicies$LocationG   0.198437   0.494674   0.401   0.6883   
Firepolicies$LocationK   0.205169   0.506205   0.405   0.6853   
Firepolicies$LocationM  -0.418141   0.498094  -0.839   0.4012   
Firepolicies$LocationT   0.448865   0.519037   0.865   0.3871   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for binomial family taken to be 1) 
 
    Null deviance: 251.91   on 191  degrees of freedom 
Residual deviance: 247.65  on 186  degrees of freedom 
AIC: 259.65 
 
Number of Fisher Scoring iterations: 4           (1)
  

          
Or Alternatively 
 
> model1=glm(Firepolicies$Claimed~Firepolicies$Claim.Size+Firepolicies$Locati
on,family = binomial(link=logit)) 
> model1 
 
Call:  glm(formula = Firepolicies$Claimed ~ Firepolicies$Claim.Size +  
    Firepolicies$Location, family = binomial (link = logit)) 
 
Coefficients: 
            (Intercept)  Firepolicies$Claim.Size   Firepolicies$LocationG   
              -0.840330                 0.003711                 0.198437   
 Firepolicies$LocationK   Firepolicies$LocationM   Firepolicies$LocationT   
               0.205169                -0.418141                 0.448865   
 
Degrees of Freedom: 191 Total (i.e. Null);  186 Residual 
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Null Deviance:     251.9  
Residual Deviance: 247.6  AIC: 259.6 
 

(4) 
 

b) 

> model2=glm(Firepolicies$Claimed~Firepolicies$Claim.Size+Firepolicies$Occupa

ncy,family = binomial()) 

> model2 

                                                                         (1) 

 
Call:  glm(formula = Firepolicies$Claimed ~ Firepolicies$Claim.Size +  
    Firepolicies$Occupancy, family = binomial()) 
 
Coefficients: 
             (Intercept)   Firepolicies$Claim.Size  Firepolicies$OccupancyDW   
               -0.492623                 -0.009519                 -0.266777   
Firepolicies$OccupancyHG  Firepolicies$OccupancyTG  FirepoliciesOccupancyTG F
irepolicies$OccupancyTM   
                0.100853                  0.817776                  1.063207   
 
Degrees of Freedom: 191 Total (i.e. Null);  186 Residual 
Null Deviance:     251.9  
Residual Deviance: 247.3  AIC: 259.28             (1) 

                             

Or Alternatively 

 

>  model2=glm(Firepolicies$Claimed~Firepolicies$Claim.Size+Firepolicies$Occup
ancy,family = binomial(logit)) 
> model2 
 
Call:  glm(formula = Firepolicies$Claimed ~ Firepolicies$Claim.Size +  
    Firepolicies$Occupancy, family = binomial(logit)) 
 
Coefficients: 
             (Intercept)   Firepolicies$Claim.Size  Firepolicies$OccupancyDW   
               -0.492623                 -0.009519                 -0.266777   
Firepolicies$OccupancyHG  Firepolicies$OccupancyTG  Firepolicies$OccupancyTM   
                0.100853                  0.817776                  1.063207   
 
Degrees of Freedom: 191 Total (i.e. Null);  186 Residual 
Null Deviance:     251.9  
Residual Deviance: 247.3  AIC: 259.3 

(2) 

 

(vi) 

AIC for Model 1 = 259.65 and AIC for Model 2 = 259.28                     (1) 

The AIC is smaller for the model2 as compared to model1                   (1)  

So Claim Size and Occupancy model2 seems to be a better predictor than 

   Claim Size and Location, and we would choose the model2.               (1) 

 

Alternatively, 

Since both the models have a very minor difference in AICs, one can conclude 

that both models 1 and 2 are equally good.  

(3) 

 

(vii) 

Claimed is a numerical variable 

Claim.Size is a numerical variable 

Location is a factor variable 

Occupancy is a factor variable 

         (1) 
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Numerical variables are continuous variables which can take numerical values. 

Claim size and Claimed (0 for no claims in the last year or 1 for claim in   t

he last year) are examples in the context of this GLM. 

         (2) 

Factor / categorical variables are variables which only take categories. 

Location is a factor variable which takes values of 5 states – M, G, T, K and 

A. Occupancy is also a factor variable which takes 5 values viz.TM, TG, DW,  

CS and HG. 

         (2) 

(5) 

[30] 

 

Solution 4: 

(i) 

a) > m <- mean(rowMeans(Claims))                                          (1) 
   > m 
   [1] 278542.3              (1) 

(2) 
 
 
b) > s<-mean(apply(Claims,1,var))                                         (1) 

    > s 

   [1] 846425572                                                          (1) 

(2) 
 

c) > n <-ncol(Claims) 
   > n 
   [1] 5                                                      
                                                                          (1) 
 

  > v<-var(rowMeans(Claims))-mean(apply(Claims,1,var))/n                  (2) 

  > v 

  [1] 2842778626                                                          (1) 

 (4) 
  

(ii) 
 
> Z <- n/(n+s/v)                                                          (1) 
> Z 
[1] 0.9437976                                                             (1) 
 
> PurePremium <-Z*rowMeans(Claims)+(1-Z)*m                                (1) 

> PurePremium 

[1] 259773.5 258770.4 249940.8 383415.5 268150.2 251203.4                 (1) 

Credibility premium for Delhi is 38341.50 and for Kerala is 251203.40     (1) 

(5) 

 

(iii) 

Z is an increasing function of n. In the formula for credibility factor Z = n 

/ (n + s/v), with an increasing value of n, Z will tend to increase. Intuitive

ly also, it is true because as the number of observations for the particular r

isk under consideration are more, more reliable is the specific data from that 

particular risk and hence credibility factor Z would be higher indicative of m
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ore weightage to the specific data(mean for the specific risk) rather than the 

collateral data (overall mean for all risks) 

                                                                          (2) 

 

(iv)  

Based on the graph, the approximate maximum likelihood estimate i.e. the value 

at which the log likelihood is maximum is around 1.8 to 1.9. 

              (2) 

(v) 

Exact Maximum Likelihood Estimate λ is 

λ = Σ𝑥𝑖/𝑛 

                         = 280/150 
                                = 1.87             (2) 
So, the actual maximum likelihood estimate calculated using first principles 

is close to the approximate maximum likelihood determined based on the graph. 

              (1) 

                                                                         (3) 

                                                                         [20] 

 

************** 


