
 

Institute of Actuaries of India 
 
 
 
 
 
 
 

Subject CS2B – Risk Modelling and Survival 
Analysis (Paper B) 

 
 
 
 

November 2023 Examination 
 

 

INDICATIVE SOLUTION 
 

 
 
 
 
 
 
 
Introduction 
 
The indicative solution has been written by the Examiners with the aim of helping candidates. The solutions given are 
only indicative. It is realized that there could be other points as valid answers and examiner have given credit for any 

alternative approach or interpretation which they consider to be reasonable. 
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Solution 1:  

   

i)  set.seed(100)                                              

 

observations <- arima.sim(list(order = c(1,1,1), ar = 0.9, ma = 0.2), n = 50

0)                                                   

 

plot(observations, main = "Line chart of time series observation")  

                                                                                                                        

                                                                                                 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[3] 

   

ii)  • The data is not stationary as we observe that the values are changing with time  

• Downward trend is observed in the data and an upward trend towards the end, which indicates the 

data being non stationary 

• Mean and Standard Deviation are different at different points in time , mean is not constant.  

 
 
 
 
 

[2] 

   

iii)  acf(observations, main = "ACF") 

 

pacf(observations, main = "PACF") 
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[2] 

   

iv)  x = 1:501 

 

leastsquarefit <- lm(observations~x) 

 

leastsquarefit$coefficients 

 

(Intercept)           x  

 10.0453231  -0.3941461                                                                                                                

                                                               

 

plot(observations, main = "Line chart of time series observation") 

abline(leastsquarefit)                                         

                                      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[3] 
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v)  plot(leastsquarefit$res, xlab = "Time" , ylab = "Residuals") 

 

It is clear that residuals are not stationary as they are negative in the first, then followed by positive 

residuals in the middle part and then negative in the last part. 

Alternate Solution  

acf(leastsquarefit$res) 

 

The residuals are not stationary as the ACF values are decaying very slowly. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[2] 

   

vi)  fit1 = arima(observations, order= c(1,0,0)) 

fit1 

 

Call: 

arima(x = observations, order = c(1, 0, 0)) 
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Coefficients: 

         ar1  intercept 

      0.9997   -89.3179 

s.e.  0.0004    85.5509 

 

sigma^2 estimated as 5.091:  log likelihood = -1122.25,  aic = 2250.5 

 

fit2 = arima(observations, order= c(3,0,0)) 

fit2 

 

Call: 

arima(x = observations, order = c(3, 0, 0)) 

 

Coefficients: 

         ar1      ar2     ar3  intercept 

      2.0064  -1.1350  0.1278   -89.0734 

s.e.  0.0443   0.0864  0.0444    46.5760 

 

sigma^2 estimated as 1.01:  log likelihood = -718.61,  aic = 1447.22 

 

fit3 = arima(observations, order= c(1,0,1)) 

fit4 

 

Call: 

arima(x = observations, order = c(1, 0, 1)) 

 

Coefficients: 

         ar1     ma1  intercept 

      0.9996  0.7731   -89.3280 

s.e.  0.0006  0.0210    83.2395 

 

sigma^2 estimated as 2.128:  log likelihood = -904.58,  aic = 1817.16 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[3] 

   

vii)  fit1$coef[1] - qnorm(0.975)*sqrt(fit1$var.coef[1,1]) 

     ar1  

0.998827  

 

fit1$coef[1] + qnorm(0.975)*sqrt(fit1$var.coef[1,1]) 

     ar1  

1.000529  

The confidence interval is ( 0.998827 , 1.000529 )                                                                                                                           

 
 
 
 
 
 
 
 

[2] 

   

viii)  The AIC is lowest for AR(3) among the models above and hence is the best fit among the above models.                                                                                                                             

 

predict(fit2, n.ahead = 10) 

 

$pred 
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Time Series: 

Start = 502  

End = 511  

Frequency = 1  

 [1] -181.5409 -180.3970 -179.3290 -178.3314 -177.3959 -176.5145 -175.6804 -

174.8877 -174.1311 

[10] -173.4062 

 

$se 

Time Series: 

Start = 502  

End = 511  

Frequency = 1  

 [1]  1.005205  2.253488  3.677225  5.195037  6.758213  8.335575  9.906391 1

1.456656 12.976922 

[10] 14.460927                                                                                                                           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[2] 

   

ix)  par(mfrow = c(1,2)) 

acf(fit2$residuals) 

pacf(fit2$residuals) 

                                                                                          

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[2] 

   

x)  PACF for the data shows no significance from lag 2 which could indicate stationarity but the ACF is decaying 
very slowly indicating it is not stationary.  For example, this is consistent with ARIMA (1,1,1) behaviour. 
 

The plot for the residuals generally lies within the confidence intervals. This is consistent with the residuals 
forming the white noise process.                                                         

 
 
 

[2] 

   

xi)  Box.test(fit2$residuals, type = "Ljung", fitdf = 3, lag = 4) 

 

 Box-Ljung test 

 

data:  fit2$residuals 

X-squared = 5.8414, df = 1, p-value = 0.01565 
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Box.test(fit2$residuals, type = "Ljung", fitdf = 3, lag = 6) 

 

 Box-Ljung test 

 

data:  fit2$residuals 

X-squared = 8.3718, df = 3, p-value = 0.03892 

 

Box.test(fit2$residuals, type = "Ljung", fitdf = 3, lag = 12) 

 

 Box-Ljung test 

 

data:  fit2$residuals 

X-squared = 17.565, df = 9, p-value = 0.04057 

 

• The result above suggests that the residuals are forming a white noise process suggesting a good 

fit for ARIMA(3,0,0) model,                                             

• The result above also suggests that the model requires differencing as it is consistent with 

ARIMA(p,1,q) behaviour.                                                               

• However, the three tests are not consistent with an ARIMA(3,0,0) model at the 5% significance 

level, since the p-values are lesser than 0.05             

• Thus, there is not enough evidence to conclude ARIMA(3,0,0) to be a good fit.      

• Also, we would expect the ARIMA(1,1,1) model that was used to generate the data to satisfy this 

test as well and thus can be shown to be also a good fit.             

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
[5] 

 [28 Marks] 
   
Solution 2:  

   

i)  <code for reading the input data file> 
 
e.g. Claims <- read.csv(‘path’/Claims.csv") 

 
Claims$block <-(Claims$Claim_number-1) %/% 5 +1                

 
blockmax <- aggregate(Claims ~ block, Claims, max)              

 
blockmax 
   block Claims 
1      1    104 
2      2     94 
3      3    218 
4      4    235 
5      5    140 
6      6     84 
7      7    213 
8      8    222 
9      9    128 
10    10    247 
11    11    152 
12    12    202 
13    13    193 
14    14    201 
15    15    180 
16    16    291 
17    17    243 
18    18    163 
19    19    267 
20    20    203                                                                            

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[2] 
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ii)  hist(blockmax$Claims, xlab = "Claims", main = "Histogram of block maxima") 
 

                                                                                     [2] 

   

iii)  hist(blockmax$Claims, xlab = "Claims", main = "Histogram of block maxima", f
req = FALSE) 
lines(density(blockmax$Claims), col = "blue") 

 

 

 [2] 

   

iv)  library(MASS) 
 
est <- fitdistr(blockmax$Claims, "weibull", lower = 0)           
est 
      shape         scale    
    3.8973242   209.3505841  
 (  0.7069667) ( 12.6163461) 

 
c = est$estimate["scale"]^ (-est$estimate["shape"])              
> c 
       scale  
9.011579e-10  

 
> g = est$estimate["shape"]                          
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> g 
   shape  
3.897324                                                                                                                                                                                                       

 
 

[3] 

   

v)  alpha = mean(blockmax$Claims) 
alpha 
[1] 189 
beta = sd(blockmax$Claims) 
beta 
[1] 57.78271 
gamma = skewness(blockmax$Claims) 
gamma 
[1] -0.273219                                                                                                                   

 
 
 
 
 

[3] 

   

vi)  MLE = function(x){f <- 1/x[2]*(1+x[3]*(blockmax$Claims - x[1])/x[2])^(-1-1/x
[3])*exp(-(1+x[3]*(blockmax$Claims- x[1])/x[2])^(-1/x[3])) 
 lnf <- log(f) 
 sum(-lnf) 
 }                                                                                                                [2] 

   

vii)   
p = c(alpha,beta,gamma)                                      
 
MLE(p)                                                       
[1] 110.3667 

 
f_MLE <- nlm(MLE,p)                                          
f_MLE 
$minimum 
[1] 108.4947 
 
$estimate 
[1] 173.0482986  59.5496685  -0.4257482 
 
$gradient 
[1] -2.207406e-07 -7.863145e-07 -5.439915e-05 
 
$code 
[1] 1 
 
$iterations 
[1] 33                                                                                                                                                                           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[2] 

   

viii)  GEV <- function(x,a,b,c){f = 1/b * (1+c*(x-a)/b)^-(1+1/c)*exp(-((1+c*(x-a)/b
)^(-1/c)))} 
                                                                  
 
fit = GEV(blockmax$Claims,f_MLE$estimate[1],f_MLE$estimate[2],f_MLE$estimate
[3]) 
                                                                  
fit 
 [1] 0.002216593 0.001752716 0.006657504 0.005922606 0.004311508 0.001356100 
0.006776331 
 [8] 0.006529717 0.003563970 0.005131517 0.005053503 0.006876667 0.006798624 
0.006874941 
[15] 0.006456144 0.001361035 0.005416809 0.005683342 0.003474704 0.006876611 

                                                                                                                                                                                                                                               [2] 

   

ix)  h = dweibull(blockmax$Claims,g,est$estimate["scale"])/(1-pweibull(blockmax$C
laims,g,est$estimate["scale"]))                              
h 
 [1] 0.002452262 0.001829610 0.020933123 0.026020746 0.005802246 0.001320774 
0.019572126 
 [8] 0.022065445 0.004475462 0.030059810 0.007363354 0.016784861 0.014708485 
0.016545242 
[15] 0.012017747 0.048335279 0.028670960 0.009015548 0.037666671 0.017026742 

 
plot(m,blockmax$Claims) 
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The hazard function is an increasing function of x. An increasing hazard function indicates lighter tail.                                                                                         

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

[4] 

   

x)  Sy = function(y,g,b){(1-pweibull(y,g,b))} 
int = integrate(Sy,0, Inf, g, est$estimate[“scale”]) 
ex = int$value/Sy(blockmax$Claims,g,est$estimate[“scale”])       
 
 
plot(ex,blockmax$Claims) 

                                               
 

The mean residual life function is an increasing function of x. An increasing mean residual function 
indicates a lighter tail. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[5] 

 [27 Marks]  

   

Solution 3:  

   

i)  <code for reading the input data file> 
e.g. Std_Table <- read.csv(‘path’/Std_Table.csv") 
 
Std_Table$Exmux_1 = Std_Table$Exposure * Std_Table$Graduation_1 
 
Std_Table$Exmux_2 = Std_Table$Exposure * Std_Table$Graduation_2 
 
Std_Table$zx_1 = (Std_Table$Deaths - Std_Table$Exmux_1)/(sqrt(Std_Table$Exmux
_1)) 
 
Std_Table$zx_2 = (Std_Table$Deaths - Std_Table$Exmux_2)/(sqrt(Std_Table$Exmux
_2)) 
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head(Std_Table, 10) 
# A tibble: 10 × 9 
     Age Exposure Deaths Graduation_1 Graduation_2 Exmux_1 Exmux_2   zx_1    zx_2 
   <dbl>    <dbl>  <dbl>        <dbl>        <dbl>   <dbl>   <dbl>  <dbl>   <dbl> 
 1    30    70000     39     0.000388     0.000555    27.2    38.8  2.27   0.0241 
 2    31    69747     43     0.000429     0.000623    29.9    43.5  2.39  -0.0686 
 3    32    68140     34     0.000474     0.000488    32.3    33.3  0.299  0.130  
 4    33    68744     31     0.000524     0.000432    36.0    29.7 -0.837  0.239  
 5    34    66852     23     0.000579     0.000486    38.7    32.5 -2.52  -1.66   
 6    35    69230     50     0.00064      0.000596    44.3    41.3  0.855  1.36   
 7    36    61580     48     0.000708     0.000685    43.6    42.2  0.667  0.896  
 8    37    67582     43     0.000782     0.000713    52.8    48.2 -1.35  -0.747  
 9    38    68363     48     0.000865     0.000709    59.1    48.5 -1.45  -0.0674 
10    39    65914     47     0.000956     0.000733    63.0    48.3 -2.02  -0.189  

                                                                                                    

 
 
 
 
 
 
 

[3] 

   

ii)  diff_1 = data.frame(grad_1 = diff(Std_Table$Graduation_1),grad_2 = diff(Std_T
able$Graduation_2)) 

 
diff_2 = data.frame(grad_1 = diff(diff_1$grad_1),grad_2 = diff(diff_1$grad_2)
) 

 
diff_3 = data.frame(grad_1 = diff(diff_2$grad_1),grad_2 = diff(diff_2$grad_2)
) 

 
head(diff_3, 10) 
             grad_1                grad_2 
1         1.000000e-06            0.000282 
2        -2.710505e-19            0.000031 
3         1.000000e-06           -0.000054 
4         1.000000e-06           -0.000077 
5        -1.000000e-06           -0.000040 
6         3.000000e-06            0.000029 
7        -1.000000e-06            0.000060 
8         1.000000e-06            0.000046 
9         3.000000e-06            0.000012 
10       -1.000000e-06           -0.000026 

 
The third differences are larger for Graduation 2 than for Graduation 1 and they progress in less regular 
manner and hence Graduation 2 is not as smooth as Graduation 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[3] 

   

iii)  chisq = vector(length = 2) 
 
chisq[1] = sum(Std_Table$zx_1^2) 
 
chisq[2] = sum(Std_Table$zx_2^2) 
 
df = c(46,47) 
 
1 - pchisq(chisq, df = df) 
 
[1] 1.332268e-15 0.000000e+00 
 

The p-value for graduation 1 is 1.332268e-15  

The p-value for graduation 2 is 0.000000e+00  

 

Graduation-2 is overfitted as observed the respective p-value.  [3] 

   

iv)  positive = vector(length = 2) 
> negative = vector(length = 2) 
> positive[1] = length(Std_Table$zx_1[Std_Table$zx_1 > 0]) 
> positive[2] = length(Std_Table$zx_2[Std_Table$zx_2 > 0]) 
> negative[1] = length(Std_Table$zx_1[Std_Table$zx_1 < 0]) 
> negative[2] = length(Std_Table$zx_2[Std_Table$zx_2 < 0]) 
> positive 
[1] 38 30 
> negative 
[1] 23 31                                [3] 

   

v)  For Graduation 1 we have more positive values 
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So p value is  

2 * P(P>=38) = 2* [1 – P(P <=37)]  
 
2 * (1 - pbinom(37, size = 61, prob = 0.5)) 
[1] 0.07217744 
 

 

For Graduation 2 we have more negative values 

So p value is  

2 * P(P<=30)  

 
2 * pbinom(30, size = 61, prob = 0.5) 
[1] 1                                                                                                                             

 
 
 
 
 
 
 
 
 
 
 

[3] 

   

vi)  groups = vector(length = 2) 
 
for(j in 1:2){positive_z = (Std_Table[, j+7]>0)*1 
+ groups[j] = sum(duplicated(c(which(positive_z == 1) - 1, which(positive_z =
= 0 )))*1) 
+ positive_z[1]*1} 
 

groups 
[1] 12 14 [3] 

   

vii)  pvalue = vector(length = 2) 
 
for (j in 1:2){pvalue[j]=0 
+ for (k in 1 : groups[j]){pvalue[j]= pvalue[j]+choose(positive[j]-1,k-1)* ch
oose(negative[j]+1,k)/choose(positive[j]+negative[j], positive[j])}} 
 

pvalue 
[1] 0.09281982 0.26299014                                                              [3] 

   

viii)  scf = vector(length = 2) 
m = length(Std_Table$Age) 

 
for (j in 1:2) {scf[j] = (cor(Std_Table[1:m-1,j+7],Std_Table[2:m,j+7])*1)*sqr
t(m)} 

 
scf 
[1]  1.2153759212 -0.0003617506 

 
For Graduation 1 , p value is less than 1.6449, the upper 5% point of standard normal distribution so there 
is no evidence of grouping of deviations of the same sign. 
For Graduation 2, the p – value is negative and close to 0, indicating nearby values of Zx tend to have 
opposite values.                                      [3] 

   

ix)  cdt = vector(length = 2) 
 
for (j in 1:2) {cdt[j] = (sum(Std_Table$Deaths) - sum(Std_Table[,j+5]))/sqrt(
sum(Std_Table[,j+5]))} 
> cdt 
[1]   3.767196 -30.221501 

 
Graduation 1 p value is higher than 2.5% points of N(0,1) i.e. 1.96, there is sufficient evidence to reject 
null hypothesis. Therefore, there is bias in the Graduated rates 1. 
Graduation 2 has high magnitude of negative test statistic that means, the bias in graduated rates is too 
high.                                   [3] 

   

x)  Based on above tests,  

• Graduation 1 is smoother than Graduation 2 

• Both the graduation passes the goodness of fit, but Graduation 2 seems to be overfitted 
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• Signs test indicates slightly higher positive signs for Graduation 1 as compared to Graduation 2, 
however p value for both the Graduation passes the test and thus the rates are not biased.  

• Grouping of signs test & Serial correlation test shows no evidence of grouping of deviations of the 
same sign. 

• Both the graduation has biasedness as having large positive or negative deviation. However, the 
biasedness seems to be too high for Graduation 2. 

• Thus, both the graduation are good fit, however, Graduation 2 is slightly overfitted and less 
smooth and thus I would suggest Graduation 1 to be published. 

 
 
 
 
 
 

[3] 

 [30 Marks] 

   
Solution 4:  

   

i)   
 > Employment <- c("Marketing","Admin","Training") 
 > Employment  
 [1] "Marketing" "Admin"     "Training" 

 
[1] 

   

ii)  > M2A<-function(x){0.0025*x} 
> M2T<-function(x){0.0075*x} 
> A2M<-function(x){0.003*x} 
> A2T<-function(x){0.004*x} 
> T2M<-function(x){0.001*x} 
> T2A<-function(x){0.003*x} 
> EmploymentTransition<-function(x){ 
+   M<-matrix(0,nrow=3,ncol=3) 
+   M[1,1]<-1-M2A(x)-M2T(x) 
+   M[1,2]<-M2A(x) 
+   M[1,3]<-M2T(x) 
+   M[2,1]<-A2M(x) 
+   M[2,2]<-1-A2M(x)-A2T(x) 
+   M[2,3]<-A2T(x) 
+   M[3,1]<-T2M(x) 
+   M[3,2]<-T2A(x) 
+   M[3,3]<-1-T2M(x)-T2A(x) 
+   M 
+ } 

 
> x<-30 
> Employmentchange_age30<-EmploymentTransition(x) 
> Employmentchange_age30 
     [,1]  [,2]  [,3] 
[1,] 0.70 0.075 0.225 
[2,] 0.09 0.790 0.120 
[3,] 0.03 0.090 0.880 

 
> y<-40 
> Employmentchange_age40<-EmploymentTransition(y) 
> Employmentchange_age40 
     [,1] [,2] [,3] 
[1,] 0.60 0.10 0.30 
[2,] 0.12 0.72 0.16 
[3,] 0.04 0.12 0.84 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[3] 

   

iii)  > install.packages("markovchain") 
> library(markovchain) 
> MCobject_age30<-new("markovchain",states=Employment,byrow=T,transitionMatri
x=Employmentchange_age30,name="Markovchain_age30") 

 
> MCobject_age30 
 
Markovchain_age30 
 A  3 - dimensional discrete Markov Chain defined by the following states:  
 Marketing, Admin, Training  
 The transition matrix  (by rows)  is defined as follows:  
          Marketing Admin Training 
Marketing      0.70 0.075    0.225 
Admin          0.09 0.790    0.120 
Training       0.03 0.090    0.880 
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> MCobject_age40<-new("markovchain",states=Employment,byrow=T,transitionMatri
x=Employmentchange_age40,name="Markovchain_age40") 
> MCobject_age40 

 
Markovchain_age40  
 A  3 - dimensional discrete Markov Chain defined by the following states:  
 Marketing, Admin, Training  
 The transition matrix  (by rows)  is defined as follows:  
          Marketing Admin Training 
Marketing      0.60  0.10     0.30 
Admin          0.12  0.72     0.16 
Training       0.04  0.12     0.84 

 
 
 
 
 
 
 
 
 

[3] 

   

iv)   
a)  
> n<-30 
> B<-c(1,0,0) 
> for(i in 1:3){B=B%*%EmploymentTransition(n+i-1)} 
> B 
          [,1]      [,2]     [,3] 
[1,] 0.3625932 0.1791008 0.458306 

 

So the required probability in 3 years is 45.8306% 

 

b)   
> n<-40 
> B<-c(1,0,0) 
> for(i in 1:5){B=B%*%EmploymentTransition(n+i-1)} 
> B 

          [,1]      [,2]      [,3] 

[1,] 0.1681993 0.2658399 0.5659607 
 

So the required probability in 5 years is 56.59607%. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[2] 

   

v)  > plot(MCobject_age40) 
 

 

 

 
 

[1] 

   

   

vi)  > set.seed(250)  



IAI                                     CS2B-1123 

     Page 15 of 15 
 

> seq_age30<-markovchainSequence(250,MCobject_age30) 
> #frequeny of the terms person aged 30 
> table(seq_age30) 
Seq_age30 
    Admin Marketing  Training  
      68         32       150 
 
 

> seq_age40<-markovchainSequence(250,MCobject_age40) 
> #frequeny of the terms person aged 40 
> table(seq_age40) 
seq_age40 
    Admin Marketing  Training  
       67        34       149  

 
 
 
 
 
 
 
 
 
 

[3] 

   

vii)  > library(lattice) 
> barchart(prop.table(table(seq_age30)),xlab="Relative frequency", ylab="Sect
ion",main="Relative Frequency of States") 

 
[2] 

 [15 Marks] 
 

 

********************* 
 
 


