Institute of Actuaries of India

Subject CS2B - Risk Modelling and Survival Analysis (Paper B)

November 2023 Examination

INDICATIVE SOLUTION

Introduction

The indicative solution has been written by the Examiners with the aim of helping candidates. The solutions given are only indicative. It is realized that there could be other points as valid answers and examiner have given credit for any alternative approach or interpretation which they consider to be reasonable.

Solution 1:

i)

```
set.seed(100)
observations <- arima.sim(list(order = c(1,1,1), ar = 0.9, ma = 0.2), n = 50 \(0)\)
plot(observations, main = "Line chart of time series observation")
```


Line chart of time series observation

ii) - The data is not stationary as we observe that the values are changing with time

- Downward trend is observed in the data and an upward trend towards the end, which indicates the data being non stationary
- Mean and Standard Deviation are different at different points in time, mean is not constant.
iii) acf(observations, main = "ACF")

pacf(observations, main = "PACF")

PACF

iv) $\quad x=1: 501$

1eastsquarefit <- 1m(observations~x)
1eastsquarefit\$coefficients

```
(Intercept)
x
```

10.0453231 -0. 3941461
plot(observations, main = "Line chart of time series observation") abline(leastsquarefit)

Line chart of time series observation

v) p lot(leastsquarefit\$res, $x 7 a b=$ "Time" , ylab = "Residuals")

It is clear that residuals are not stationary as they are negative in the first, then followed by positive residuals in the middle part and then negative in the last part.

Alternate Solution
acf(1eastsquarefit\$res)
Series leastsquarefit\$res

The residuals are not stationary as the ACF values are decaying very slowly.
vi) fit1 $=$ arima(observations, order= $c(1,0,0))$
fit1

Ca11:
$\operatorname{arima}(x=$ observations, order $=c(1,0,0))$

```
Coefficients:
            ar1 intercept
    0.9997 -89.3179
s.e. 0.0004 85.5509
```

sigma^2 estimated as 5.091: log 1ikelihood $=-1122.25$, aic $=2250.5$
fit2 $=$ arima(observations, order=c(3,0,0))
fit2
Ca11:
$\operatorname{arima}(x=$ observations, order $=c(3,0,0))$
Coefficients:

ar1	ar2	ar3	intercept	
s.e.	2.0064	-1.1350	0.1278	-89.0734
0.0443	0.0864	0.0444	46.5760	

sigma^2 estimated as 1.01: log likelihood $=-718.61$, aic $=1447.22$
fit3 $=$ arima(observations, order= c(1,0,1))
fit4
Ca11:
arima(x = observations, order $=c(1,0,1))$
Coefficients:
ar1 ma1 intercept
$0.9996 \quad 0.7731 \quad-89.3280$
s.e. $0.0006 \quad 0.0210 \quad 83.2395$
sigma^2 estimated as 2.128: log likelihood $=-904.58$, aic $=1817.16$

```
fit1$coef[1] - qnorm(0.975)*sqrt(fit1$var.coef[1,1])
    ar1
0.998827
fit1$coef[1] + qnorm(0.975)*sqrt(fit1$var.coef[1,1])
    ar1
1.000529
```

The confidence interval is ($0.998827,1.000529$)
viii) The AIC is lowest for $\operatorname{AR}(3)$ among the models above and hence is the best fit among the above models.

```
predict(fit2, n.ahead = 10)
```

\$pred

Time Series:
Start = 502
End = 511
Frequency $=1$
[1] -181.5409 -180.3970 -179.3290 -178.3314 -177.3959 -176.5145 -175.6804-
174.8877-174.1311
[10] -173.4062
\$se
Time Series:
Start = 502
End = 511
Frequency $=1$
$\begin{array}{llllllllll}{[1]} & 1.005205 & 2.253488 & 3.677225 & 5.195037 & 6.758213 & 8.335575 & 9.906391 & 1\end{array}$
1.45665612 .976922
[10] 14.460927
ix) $\quad \operatorname{par}(m f r o w=c(1,2))$
acf(fit2\$residuals)
pacf(fit2\$residua1s)

Series fit2\$residuals

Lag

Series fit2\$residuals

x) PACF for the data shows no significance from lag 2 which could indicate stationarity but the ACF is decaying very slowly indicating it is not stationary. For example, this is consistent with ARIMA $(1,1,1)$ behaviour.
The plot for the residuals generally lies within the confidence intervals. This is consistent with the residuals forming the white noise process.
xi)

```
Box.test(fit2$residuals, type = "Ljung", fitdf = 3, lag = 4)
    Box-Ljung test
    data: fit2$residuals
X-squared = 5.8414, df = 1, p-value = 0.01565
```

```
Box.test(fit2$residuals, type = "Ljung", fitdf = 3, lag = 6)
Box-Ljung test
data: fit2$residuals
X-squared = 8.3718, df = 3, p-value = 0.03892
Box.test(fit2$residuals, type = "Ljung", fitdf = 3, lag = 12)
Box-Ljung test
data: fit2$residuals
X-squared = 17.565, df = 9, p-value = 0.04057
```

- The result above suggests that the residuals are forming a white noise process suggesting a good fit for ARIMA $(3,0,0)$ model,
- The result above also suggests that the model requires differencing as it is consistent with ARIMA($p, 1, q$) behaviour.
- However, the three tests are not consistent with an ARIMA(3,0,0) model at the 5% significance level, since the p-values are lesser than 0.05
- Thus, there is not enough evidence to conclude ARIMA($3,0,0$) to be a good fit.
- Also, we would expect the ARIMA(1,1,1) model that was used to generate the data to satisfy this test as well and thus can be shown to be also a good fit.

Solution 2:

i) <code for reading the input data file>

```
e.g. Claims <- read.csv('path'/claims.csv")
Claims$block <-(Claims$Claim_number-1) %/% 5 +1
blockmax <- aggregate(Claims ~ block, Claims, max)
blockmax
    block Claims
2
            1 104
2 2 
4 4
5 5 140
6 6 84
7 7 7 213
8 8 222
9 9}12
10 10 247
11 11 152
12 12 202
13 13 193
14 14 201
15 15 180
16 16 291
17 17 243
18 18 163
19 19 267
2020203
```

ii) hist(blockmax\$Claims, x7ab = "Claims", main = "Histogram of block maxima")

Histogram of block maxima

iii) hist(blockmax\$Claims, xlab = "Claims", main = "Histogram of block maxima", f req $=$ FALSE)
1ines(density(blockmax\$c1aims), col = "blue")

Histogram of block maxima

iv) \quad iibrary (MASS)

```
est <- fitdistr(blockmax$Claims, "weibul1", lower = 0)
est
        shape scale
    3.8973242 209.3505841
    ( 0.7069667) ( 12.6163461)
```

 c = est\$estimate["scale"]^ (-est\$estimate["shape"])
 > C
scale
$9.011579 \mathrm{e}-10$
> g = est\$estimate["shape"]

```
> g
    shape
3.897324
```

v) $\quad \mathrm{a} 1 \mathrm{pha}=\operatorname{mean}(\mathrm{b} 1 \mathrm{ockmax} \$ \mathrm{Cl}$ aims $)$
a1pha
[1] 189
beta = sd(blockmax\$C1aims)
beta
[1] 57.78271
gamma = skewness (blockmax\$c1aims)
gamma
[1] -0. 273219
vi) $\quad \operatorname{MLE}=$ function $(x)\{f<-1 / x[2] *(1+x[3] *(b 1 o c k m a x \$ c 1 a i m s-x[1]) / x[2]) \wedge(-1-1 / x$
[3])*exp(-(1+x[3]*(b1ockmax\$Claims-x[1])/x[2])^(-1/x[3])) $1 \mathrm{nf}<-\log (\mathrm{f})$ sum (-1nf)
\}
vii)
$\mathrm{p}=\mathrm{c}(\mathrm{a} 1 \mathrm{pha}$, beta, gamma)
MLE (p)
[1] 110.3667

```
f_MLE <- n7m(MLE,p)
f_MLE
\$minimum
[1] 108.4947
```

\$estimate
[1] $173.0482986 \quad 59.5496685-0.4257482$
\$gradient
[1] -2.207406e-07 -7.863145e-07 -5.439915e-05
\$code
[1] 1
\$iterations
[1] 33
GEV <- function $(x, a, b, c)\{f=1 / b *(1+c *(x-a) / b) \wedge-(1+1 / c) * \exp (-((1+c *(x-a) / b$)^($-1 / c)))\}$
fit $=$ GEV(blockmax\$Claims,f_MLE\$estimate[1],f_MLE\$estimate[2],f_MLE\$estimate [3])
fit
[1] 0.0022165930 .0017527160 .0066575040 .0059226060 .0043115080 .001356100 0.006776331
[8] 0.0065297170 .0035639700 .0051315170 .0050535030 .0068766670 .006798624 0.006874941
$[15] 0.0064561440 .0013610350 .0054168090 .0056833420 .0034747040 .006876611$
ix) h = dweibul1 (blockmax\$C1aims,g,est\$estimate["scale"])/(1-pweibul1(blockmax\$c 7aims,g,est\$estimate["scale"]))
h
[1] 0.0024522620 .0018296100 .0209331230 .0260207460 .0058022460 .001320774 0.019572126
[8] 0.0220654450 .0044754620 .0300598100 .0073633540 .0167848610 .014708485 0.016545242
[15] 0.0120177470 .0483352790 .0286709600 .0090155480 .0376666710 .017026742
plot(m,blockmax\$C1aims)

The hazard function is an increasing function of x. An increasing hazard function indicates lighter tail.
x) \quad Sy $=$ function $(y, g, b)\{(1-p w e i b u 11(y, g, b))\}$
int $=$ integrate (Sy, 0, Inf, g, est\$estimate["scale"])
ex = int\$value/sy(blockmax\$Claims,g,est\$estimate["scale"])
plot (ex,blockmax\$Claims)

The mean residual life function is an increasing function of x. An increasing mean residual function indicates a lighter tail.

Solution 3:

i) <code for reading the input data file>

```
        e.g. Std_Table <- read.csv('path'/std_Table.csv")
        Std_Table$Exmux_1 = Std_Table$Exposure * Std_Table$Graduation_1
        Std_Table$Exmux_2 = Std_Table$Exposure * std_Table$Graduation_2
        Std_Table$zx_1 = (Std_Table$Deaths - Std_Table$Exmux_1)/(sqrt(Std_Table$Exmux
        _1))
        Std_Table$zx_2 = (Std_Table$Deaths - Std_Table$Exmux_2)/(sqrt(Std_Tab1e$Exmux
        _2))
```

head(Std_Table, 10) \# A tibble: 10×9									
	Age	Exposure	Deaths	Graduation_1	Graduation_2	Exmux-1	Exmux_2	zx_1	zx_2
	<dbl>	<dbl>	7>			<dbl>	<dbl>		
1	30	70000	39	0.000388	0.000555	27.2	38.8	2.27	0.0241
	31	69747	43	0.000429	0.000623	29.9	43.5	2.39	-0.068 $\underline{6}$
3	32	68140	34	0.000474	0.000488	32.3	33.3	0.299	0.130^{-}
	33	68744	31	0.000524	0.000432	36.0	29.7	-0.837	0.239
5	34	66852	23	0.000579	0.000486	38.7	32.5	-2.52	-1.66
	35	69230	50	0.00064	0.000596	44.3	41.3	0.855	1.36
	36	61580	48	0.000708	0.000685	43.6	42.2	0.667	0.896
	37	67582	43	0.000782	0.000713	52.8	48.2	-1.35	-0.747
	38	68363	48	0.000865	0.000709	59.1	48.5	-1.45	-0.0674
10	39	$\underline{65914}$	47	$0.000 \underline{956}$	$0.000 \underline{733}$	63.0	48.3	-2.02	-0.189

ii) diff 1 = data.frame(grad_1 = diff(Std_Table\$Graduation_1), grad_2 = diff(Std_T ab1e\$Graduation_2))
diff_2 = data.frame(grad_1 = diff(diff_1\$grad_1),grad_2 = diff(diff_1\$grad_2))
diff_3 = data.frame(grad_1 = diff(diff_2\$grad_1),grad_2 = diff(diff_2\$grad_2))
head(diff_3, 10)
grad_1
grad_2 $_{2} .2$
0.000282
$\begin{array}{lrr}1 & 1.000000 \mathrm{e}-06 & 0.000 \overline{2} 82 \\ 2 & -2.710505 \mathrm{e}-19 & 0.000031 \\ 3 & 1.000000 \mathrm{e}-06 & -0.000054 \\ 4 & 1.000000 \mathrm{e}-06 & -0.000077 \\ 5 & -1.000000 \mathrm{e}-06 & -0.000040 \\ 6 & 3.000000 \mathrm{e}-06 & 0.000029 \\ 7 & -1.000000 \mathrm{e}-06 & 0.000060 \\ 8 & 1.000000 \mathrm{e}-06 & 0.000046 \\ 9 & 3.000000 \mathrm{e}-06 & 0.000012 \\ 10 & -1.000000 \mathrm{e}-06 & -0.000026\end{array}$

The third differences are larger for Graduation 2 than for Graduation 1 and they progress in less regular manner and hence Graduation 2 is not as smooth as Graduation 1.
iii) chisq $=$ vector (length $=2$)
chisq[1] $=$ sum(Std_Tab1e\$zx_1^2)
chisq[2] = sum(Std_Tab1e\$zx_2^2)
$d f=c(46,47)$
1 - pchisq(chisq, df = df)
[1] $1.332268 \mathrm{e}-15 \quad 0.000000 \mathrm{e}+00$
The p-value for graduation 1 is $1.332268 \mathrm{e}-15$
The p-value for graduation 2 is $0.000000 \mathrm{e}+00$
Graduation-2 is overfitted as observed the respective p-value.
iv) positive $=$ vector $($ length $=2)$
$>$ negative $=$ vector (length $=2$)
$>$ positive[1] = length (Std_Table\$zx_1[Std_Table\$zx_1 > 0])
$>$ positive[2] $=1$ ength(Std_Table\$zx_2[Std_Table\$zx_2 >0])
$>$ negative[1] = 1ength(Std_Table\$zx_1[Std_Table\$zx_1 < 0])
> negative[2] = 1ength(Std_Tab1e\$zx_2[Std_Tab1e\$zx_2 < 0])
> positive
[1] 3830
$>$ negative
[1] 2331
v) For Graduation 1 we have more positive values

So p value is

```
2 * \(\mathrm{P}(\mathrm{P}>=38)=2^{*}[1-\mathrm{P}(\mathrm{P}<=37)]\)
2* (1 - pbinom(37, size \(=61\), prob \(=0.5\) )
[1] 0.07217744
```

For Graduation 2 we have more negative values
So p value is
2 * $\mathrm{P}(\mathrm{P}<=30)$
2 * pbinom(30, size $=61$, prob $=0.5$)
[1] 1

```
groups = vector(length = 2)
for(j in 1:2) \{positive_z = (Std_Table[, j+7]>0)*1
\(+\operatorname{groups}[j]=\operatorname{sum}\left(d u p 1 i c a t e d\left(c\left(w h i c h\left(p o s i t i v e \_z ~==1\right) ~-~ 1, ~ w h i c h\left(p o s i t i v e \_z ~=~\right.\right.\right.\right.\)
= 0 )) )* 1 )
+ positive_z[1]*1\}
```

groups
[1] 1214
vii) pvalue $=\operatorname{vector}(1$ ength $=2)$
for (j in 1:2) \{pvalue $[j]=0$

+ for (k in 1 : groups[j]) \{pvalue[j]= pvalue[j]+choose(positive[j]-1,k-1)* ch
oose(negative[j]+1,k)/choose(positive[j]+negative[j], positive[j])\}\}
pvalue
[1] 0.092819820 .26299014
scf $=$ vector $($ length $=2$)

for (j in 1:2) $\left\{\operatorname{scf}[j]=\left(\operatorname{cor}\left(S t d _T a b 7 e[1: m-1, j+7], S t d _T a b 7 e[2: m, j+7]\right) * 1\right) * s q r\right.$
$t(m)\}$

scf

[1] $1.2153759212-0.0003617506$
For Graduation $1, \mathrm{p}$ value is less than 1.6449 , the upper 5% point of standard normal distribution so there is no evidence of grouping of deviations of the same sign.
For Graduation 2 , the p - value is negative and close to 0 , indicating nearby values of $Z x$ tend to have opposite values.
ix) $\quad \mathrm{cdt}=\operatorname{vector}(1$ ength $=2)$
for (j in $1: 2$) $\{\mathrm{cdt}[\mathrm{j}]=$ (sum(Std_Table\$Deaths) - sum(Std_Table[,j+5]))/sqrt(sum(Std_Tab1e[,j+5])) \}
$>\mathrm{cdt}$
[1] $3.767196-30.221501$
Graduation $1 p$ value is higher than 2.5% points of $N(0,1)$ i.e. 1.96 , there is sufficient evidence to reject null hypothesis. Therefore, there is bias in the Graduated rates 1.
Graduation 2 has high magnitude of negative test statistic that means, the bias in graduated rates is too high.
x) Based on above tests,

- Graduation 1 is smoother than Graduation 2
- Both the graduation passes the goodness of fit, but Graduation 2 seems to be overfitted
- Signs test indicates slightly higher positive signs for Graduation 1 as compared to Graduation 2, however p value for both the Graduation passes the test and thus the rates are not biased.
- Grouping of signs test \& Serial correlation test shows no evidence of grouping of deviations of the same sign.
- Both the graduation has biasedness as having large positive or negative deviation. However, the biasedness seems to be too high for Graduation 2.
- Thus, both the graduation are good fit, however, Graduation 2 is slightly overfitted and less smooth and thus I would suggest Graduation 1 to be published.

Solution 4:

i)

$$
\begin{aligned}
& >\text { Employment <- c("Marketing","Admin","Training") } \\
& \text { > Employment "Marketing" "Admin" "Training" } \\
& \text { [1] "Ma }
\end{aligned}
$$

ii)

```
M2A<-function(x){0.0025*x}
M2T<-function(x) {0.0075*x}
A2M<-function(x) {0.003*x}
A2T<-function(x) {0.004*x}
T2M<-function(x){0.001*x}
T2A<-function(x){0.003*x}
EmploymentTransition<-function(x){
M<-matrix(0,nrow=3, ncol=3)
M[1,1]<-1-M2A(x)-M2T(x)
M[1,2]<-M2A(x)
M[1,3]<-M2T(x)
M[2,1]<-A2M(x)
M[2,2]<-1-A2M(x)-A2T(x)
M[2,3]<-A2T(x)
M[3,1]<-T2M(x)
M[3,2]<-T2A(x)
    M[3,3]<-1-T2M(x)-T2A(x)
    M
}
```

x<-30
Employmentchange_age30<-EmploymentTransition (x)
> Employmentchange_age30
$\begin{array}{ccc}{[, 1]} & {[, 2]} & {[, 3]} \\ 0.70 & 0.075 & 0.225\end{array}$
$[1] \quad 0.70 ~$,
$\left[\begin{array}{llll}{[2,]} & 0.09 & 0.090 & 0.880\end{array}\right.$
$>y<-40$
> Employmentchange_age40<-EmploymentTransition(y)
> Employmentchange_age40
[,1] [,2] [,3]
$[1] \quad$,
$[2] \quad 0.12 \quad$,
$[3] \quad 0.04 \quad 0.12 \quad$,
iii) > install.packages("markovchain")
> library (markovchain)
> MCobject_age30<-new("markovchain", states=Employment, byrow=T, transitionMatri
x=Employmentchange_age30, name="Markovchain_age30")

```
> MCobject_age30
```

Markovchain_age30
A 3 - dimensional discrete Markov Chain defined by the following states:
Marketing, Admin, Training
The transition matrix (by rows) is defined as follows: Marketing Admin Training

Marketing	0.70	0.075	0.225
Admin	0.09	0.790	0.120
Training	0.030 .090	0.880	

```
> MCobject_age40<-new('markovchain",states=Employment,byrow=T,transitionMatri
x=Employmentchange_age40,name="Markovchain_age40")
> MCobject_age40
Markovchain__age40
    A 3 - dimensional discrete Markov Chain defined by the following states:
    Marketing, Admin, Training
    The transition matrix (by rows) is defined as follows:
                Marketing Admin Training
\begin{tabular}{lrrr} 
Marketing & 0.60 & 0.10 & 0.30 \\
Admin & 0.12 & 0.72 & 0.16 \\
Training & 0.04 & 0.12 & 0.84
\end{tabular}
```

iv)
a)
$>\mathrm{n}<-30$
$>B<-C(1,0,0)$
$>$ for $(\mathrm{i}$ in 1:3) $\{\mathrm{B}=\mathrm{B} \% * \%$ EmploymentTransition $(\mathrm{n}+\mathrm{i}-1)\}$
> B
$[1] \quad$,
0.1791008
0.458306

So the required probability in 3 years is 45.8306%
b)

```
> n<-40
> B<-C(1,0,0)
> for(i in 1:5){B=B%*%EmploymentTransition(n+i-1)}
> B
```

 \([, 1] \quad[, 2] \quad[, 3]\)
 [1,] 0.16819930 .26583990 .5659607

So the required probability in 5 years is 56.59607%.
v) > plot(MCobject_age40)


```
> seq_age30<-markovchainSequence(250,MCobject_age30)
> #frequeny of the terms person aged 30
> table(seq_age30)
Seq_age30
    Admin Marketing Training
        68 32 150
> seq_age40<-markovchainSequence(250,MCobject_age40)
> #frequeny of the terms person aged 40
> table(seq_age40)
seq_age40
    Admin Marketing Training
```

vii) > library(1attice)
> barchart(prop.table(table(seq_age30)), xlab="Relative frequency", ylab="Sect ion",main="Relative Frequency of States")

Relative Frequency of States

