Institute of Actuaries of India

Subject CS1-Actuarial Statistics (Paper B)

November 2023 Examination

INDICATIVE SOLUTION

Introduction

The indicative solution has been written by the Examiners with the aim of helping candidates. The solutions given are only indicative. It is realized that there could be other points as valid answers and examiner have given credit for any alternative approach or interpretation which they consider to be reasonable.

Solution 1:

i) $\quad>\# \mathrm{X} \sim \mathrm{N}\left(5400,900^{\wedge} 2\right)$
> x.mean=5400
> x.sd=900
> \#Y~N(3600,1500^2)
$>y$.mean $=3600$
$>y . s d=1500$
$>\# \mathrm{P}(\mathrm{X}>2 \mathrm{Y})=\mathrm{P}(\mathrm{X}-2 \mathrm{Y}>0)$
$>$ \# $\mathrm{X}-2 \mathrm{Y} \sim \mathrm{N}\left(\mathrm{x}\right.$. mean -2 y. mean, $\left.\mathrm{x} . \mathrm{sd}^{\wedge} 2+4 \mathrm{y} . \mathrm{sd}^{\wedge} 2\right)$
$>$
$>$ f.mean<-x.mean $-2 *$ y.mean
$>$ f.var <- x.sd^2+4*y.sd^2
$>$
> 1-pnorm(0,mean=f.mean,sd=sqrt(f.var))
[1] 0.2827485
ii)
a) >> dif.mean<-x.mean - y.mean
$>$ dif.mean
[1] 1800
$>$
$>$ dif.sd $<-s q r t\left(x . s d^{\wedge} 2+y . s d^{\wedge} 2\right)$
$>$ dif.sd
[1] 1749.286
b) $\quad>$ set.seed(1234)
$>$ dif.sample<-rnorm(50,dif.mean,dif.sd)
c) qnorm(dif.sample)
qqline(dif.sample)

align with normality probably due to low sample size and high variability.
iii)
a) > sample.mean<-mean(dif.sample)
> sample.mean
[1] 1007.481
> $\mathrm{z}<-$ (sample.mean-1375)/(dif.sd/sqrt(50))
$>$ pnorm(z)
[1] 0.06869143
Since p-value is >0.05 we cannot reject the null hypothesis and thus, don't have sufficient evidence to say that mean is less than 1375 .
b) t.test(dif.sample, mu=1375, alternative = "less")

One Sample t-test
data: dif.sample
$\mathrm{t}=-1.6786, \mathrm{df}=49, \mathrm{p}$-value $=0.0498$
alternative hypothesis: true mean is less than 1375
95 percent confidence interval:
-Inf 1374.558
sample estimates:
mean of x
1007.481

Since p-value is <0.05 we can reject the null hypothesis and can imply that mean is less than 1375 .
iv)
a) dif.sample2<-rnorm(1000,dif.mean,dif.sd)
b) qqnorm(dif.sample2)
qqline(dif.sample2)

With larger sample size, it indicates normality.

Solution 2:

i) dance<-read.csv("dance.csv")
head(dance)
ii) plot(dance)

iii) Judges score and Final score seems to have a linear relationship

Audience score is quite scattered and doesn't show any strong linear relationship with either Judges or Final score
iv)
a) $\mathrm{m} 1<-\operatorname{lm}$ (Final~Judges+Audience,data=dance)
b) > summary (ml)

Call:
$\operatorname{lm}($ formula $=$ Final \sim Judges + Audience, data $=$ dance $)$
Residuals:
Min 1Q Median 3Q Max
-5.2783-0.7971 0.18411 .63343 .7680

Coefficients:

$\begin{array}{llll}\text { (Intercept) } 10.617827 & 15.129865 & 0.702 & 0.492\end{array}$
Judges $0.7202730 .128870 \quad 5.589$ 3.26e-05 ***
$\begin{array}{llll}\text { Audience } & 0.001449 & 0.001294 & 1.120 \\ 0.278\end{array}$

Signif. codes: 0 '***’ $0.001^{\prime * * ’} 0.01^{\prime *} 0.05^{\prime} .{ }^{\prime} 0.1^{\prime}{ }^{\prime} 1$
Residual standard error: 2.604 on 17 degrees of freedom
Multiple R-squared: 0.6601 , Adjusted R-squared: 0.6201
F-statistic: 16.51 on 2 and 17 DF, p-value: 0.0001038

$$
\text { Final }=10.617827+0.720273 * \text { Judges }+0.001449 * \text { Audience }
$$

c) $\quad>\operatorname{confint}(\mathrm{m} 1)$

$$
2.5 \% \quad 97.5 \%
$$

(Intercept) - 21.303397742 .5390512
Judges 0.44838110 .9921649
Audience -0.0012812 0.0041793
$>$
d) > \#Judges score seems significant since confidence interval doesn't contain 0 .

Sum of audience score doesn't seem significant sine it contains 0 .
Alternate:
$>$ \#P-value is <. 01 for judges score showing significance.
v) audience.count<-c(110,100,90,120,100,100,100,100,110,110,100, $100,110,90,100,110,120,120,100,100)$
sum(audience.count)
[1] 2090
vi) dance\$Audience2<-dance\$Audience/audience.count
vii) $\quad>$ cor.test(dance\$Final, dance\$Audience2)

Pearson's product-moment correlation
data: dance\$Final and dance\$Audience2
$\mathrm{t}=4.9045, \mathrm{df}=18, \mathrm{p}$-value $=0.0001142$
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.47161090 .8982071
sample estimates:
cor
0.7562948
> \#correlation between audience score and final score is quite high
viii) $\quad \mathrm{m} 2<-\operatorname{lm}$ (Final \sim Judges+Audience2,data=dance)
$>$ summary (m2)
Call:
$\operatorname{lm}($ formula $=$ Final \sim Judges + Audience2, data $=$ dance $)$
Residuals:
Min 1Q Median 3Q Max
-1.9408-1.0269 0.11291 .04661 .6075
Coefficients:

Residual standard error: 1.258 on 17 degrees of freedom
Multiple R-squared: 0.9207, Adjusted R-squared: 0.9114
F-statistic: 98.73 on 2 and 17 DF , p-value: $4.39 \mathrm{e}-10$
ix) \#Adjusted R-square $=0.9114$ for model2 vs 0.6201 for model1.
\#This indicates model 2 is better

Alternate:

\# R square can be used

Solution 3:

i) $\quad \log (y)=0.5306$
poisson distribution is used to model response variable.
ii) > Claim.mean<-round $(\exp (.5306), 1)$
$>$ Claim.mean
[1] 1.7
iii) $\quad \log (\mathrm{y})=1.1394 *$ GenderF $+1.1394 *$ GenderM -1.4271 *HealthNonDiabetic
where GenderF $=1$ if Gender $=\mathrm{F}$ else 0
GenderM $=1$ if Gender $=M$ else 0
HealthNonDiabetic $=1$ if Health= NonDiabetic else 0
iv) For model 2, " -1 " is used in Glm R formula to not take the intercepts while fitting the model. Thus, no intercept exits.
v) $\quad \operatorname{AIC}(=59.4)$ of model 2 which is lower than AIC (71.1) of model 1. This indicates that model 2 is better.
vi) \quad \#AIC $=-2 \operatorname{LogL}($ Model $)+2 *$ Parameters
$>$ \#LogL(Model) $=$ Parameters - AIC/2
$>$ aic<-59.403
$>$ par<-3
$>$
$>\mathrm{L}<-$ par - aic/2
$>$ L
[1] -26.7015
vii) \#Total claims = Mean claims * Total policies
$>\mathrm{x}<$-Claim.mean*20
$>$ poisson.test $(\mathrm{x}=\mathrm{X}, \mathrm{T}=20, \mathrm{r}=1.5$, conf.level $=0.99)$
Exact Poisson test
data: X time base: 20
number of events $=34$, time base $=20, p$-value $=0.4639$
alternative hypothesis: true event rate is not equal to 1.5
99 percent confidence interval:
1.0428372 .605372
sample estimates:
event rate
1.7
$>$
> \# We cannot reject the null hypothesis that parameter is equal to 1.5 .

Solution 4:

i) $\mathrm{q} 4<-$ matrix $(\mathrm{c}(455,251,309,400$,

458,322,246,426,
587,292,217,470, 531,340,120,547), ncol=4, nrow=4)
$\mathrm{n}<-\operatorname{ncol}(\mathrm{q} 4)$
$\mathrm{m}<-$ mean(rowMeans(q4))
s<-mean(apply(q4,1,var))
$\mathrm{v}<-\mathrm{var}(\mathrm{rowMeans}(\mathrm{q} 4))$ - mean(apply(q4,1,var))/n
$\mathrm{Z}<-\mathrm{n} /(\mathrm{n}+\mathrm{s} / \mathrm{v})$
n
[1] 4
$>\mathrm{m}$
[1] 373.1875
$>\mathrm{s}$
[1] 3967.854
$>\mathrm{v}$
[1] 16843.22
> Z
[1] 0.9443816
ii) $\quad \mathrm{Z} *$ rowMeans(q4[3:4,])+(1-Z)*m
[1] 231.3532455 .8799
iii) Risk Volumes are required to apply EBCT2
iv) obs<-c($61,71,15,3$)
$>$
> \#Combine 2 and 3 since value of 3 is less than 5
$>$ obs.comb<-c(61,71,15 + 3)
$>$
$>\mathrm{p}<-0.2$
$>\exp <-\mathrm{dbinom}(\mathrm{c}(0: 1), 3, \mathrm{p})$
$>\exp [3]<-1-$ pbinom $(1,3, p)$
$>\operatorname{sum}(\exp)$
[1] 1
>
$>$ chisq.test $(\mathrm{x}=\mathrm{obs} . c o m b, \mathrm{p}=\exp)$
Chi-squared test for given probabilities
data: obs.comb
X-squared $=6.7371, \mathrm{df}=2, \mathrm{p}$-value $=0.03444$
Since p-value <0.5, we have sufficient evidence to reject the null hypothesis that cancellation follows bin($3,0.2$)

