INSTITUTE OF ACTUARIES OF INDIA

EXAMINATIONS

$24{ }^{\text {th }}$ November 2023

Subject CS2A - Risk Modelling and Survival Analysis (Paper A)

Time allowed: 3 Hours 15 Minutes (14.45-18.00 Hours)
Total Marks: 100

INSTRUCTIONS TO THE CANDIDATES

1. Please read the instructions inside the cover page of answer booklet and instructions to examinees sent along with hall ticket carefully and follow without exception.
2. Mark allocations are shown in brackets.
3. Attempt all questions beginning your answer to each question on a separate sheet.
4. Please check if you have received complete Question Paper and no page is missing. If so, kindly get new set of Question Paper from the Invigilator.

AT THE END OF THE EXAMINATION

Please return your answer book and this question paper to the supervisor separately. You are not allowed to carry the question paper in any form with you.
Q. 1) An investor analyst assesses the rating of insurance and reinsurance companies every month. For the purpose of analysis, the ratings are grouped and classified in the order of merit as Marginal (rating symbols below B), Fair (rating symbols B and B-), Good (rating symbols B+ and B++), Excellent (rating symbols A and A-), Superior (rating symbols A+ and A++).

According to the history, the rating of the bonds evolves as a Markov chain with transition probability matrix given below for some parameter ' α ' :

Note: The symbols M, F, G, E and S in the above matrix represent the rating groups Marginal, Fair, Good, Excellent and Superior respectively.
i) Draw the transition graph of the chain.
ii) Determine the range of α for which the matrix is a valid transition matrix.
iii) Explain whether the chain is irreducible and/or aperiodic.
iv) Using the above transition probability matrix, calculate the long-run probability that an insurance company is at rating status Superior (S). Assume $\alpha=0.1$.
Q. 2) An Actuary has been asked to build a model to predict whether a particular policy will have a claim or not. Consider a sample dataset given below corresponding to past year.

Location/Zone	Policy Type	Business Type	Age Group	Claim
$\left(\mathrm{X}_{1}\right)$	$\left(\mathrm{X}_{2}\right)$	$\left(\mathrm{X}_{3}\right)$	$\left(\mathrm{X}_{4}\right)$	(Y)
East	Individual	Fresh	<45	No
West	Floater	Port	$45-55$	Yes
South	Individual	Port	>55	Yes
North	Individual	Port	>55	Yes
East	Floater	Fresh	<45	No
North	Floater	Fresh	$45-55$	No
South	Floater	Fresh	$45-55$	No
West	Individual	Port	>55	Yes
East	Individual	Port	<45	No
West	Individual	Fresh	<45	No
North	Floater	Port	>55	Yes
South	Floater	Port	$45-55$	No

You have been asked to use Naïve-Bayes Classifier Model to predict whether a claim will be made or not for a given set of data inputs.
i) What assumption will you make in order to apply Naïve-Bayes Classifier Model?
ii) Show that the conditional probability that a policy with n characteristics gives a claim can be written as
$\mathrm{P}\left(\right.$ Claim $=$ Yes $\left.\mid \mathrm{X}_{1}=\mathrm{x}_{1}, \mathrm{X}_{2}=\mathrm{x}_{2}, \ldots ., \mathrm{X}_{\mathrm{n}=\mathrm{x}_{\mathrm{n}}}\right) \propto \mathrm{P}($ Claim=Yes $) \prod_{j=1}^{n} P\left(X_{\mathrm{j}}=\mathrm{x}_{\mathrm{j}} \mid\right.$ Claim = Yes)
where X_{j} is random variable denoting the variable j and X_{j} is the realisation of that random variable.
iii) Calculate the conditional probability $P\left(X_{j} \mid Y_{j}\right)$ for each x_{j} in X and y_{j} in Y.
iv) Assume a new policy A of Individual Policy type from North Zone of age group 45-55 years and Port business type is written by the company. Predict whether there will be a claim or not on the given policy. Your calculation shall include proportional probabilities also.
Q. 3) The time in minutes, until a squash player scoring each point (against a particular player) is exponentially distributed with parameter λ, where λ takes values $1 / 5,1 / 2$ or 1 depending upon whether the player has made no point, one point or more than one point respectively till the last score. The probability of scoring a point is not dependant on whether the player has previously scored or not. Each game is played up to 11 points.

Note: The player who first scores 11 points wins. Assume that the player is going to win without giving a chance for the opponent to score.
i) Explain how you could model this as a Markov process, commenting on any assumptions made.
ii) Calculate the probability that the player will score more than two points in next 6 minutes (Using differential equation).
iii) Calculate the expected time in minutes to complete the game.
Q. 4) A health insurance policy offers three types of hospital cash benefits options - Silver, Gold and Platinum, having different lumpsum hospital cash benefits payable.
Claims on these portfolios of policies occur according to a Poisson process with a mean rate of 4 claims per day, irrespective of the type of benefit. 50% of claims are of type Silver, 30% are of type Gold and remaining of type Platinum.
i) Calculate the expected waiting time until the first claim of type Silver.
ii) Calculate the probability that there are at least 9 claims during the first 2 days, given that there were exactly 7 claims during the first day. State any assumptions made.
iii) Calculate the probability that there are at least 5 claims of Gold type during the first day and at least 7 claims of amount Gold type during the first 2 days.
Q. 5)
i) Explain rate interval and three possible definition of age, rate interval, μ rate of mortality and q probability of death.
ii) How would an Actuary graduate the crude rates of mortality for following classes of lives:
a) patients dealing with Chronic myeloid leukemia (CML).
b) male population of all civil services of entire country.
c) females with life insurance for large developed country.
d) a life insurance product to be sold to lives under age 30 .
iii) An investigation took place into the mortality of diabetes patients between exact age 50 and 51 , the force of mortality μ_{50} is assumed to be constant.

The investigation began on $1^{\text {st }}$ April 2022 and ended on $1^{\text {st }}$ April 2023. Table below gives the data collected in this investigation for 10 lives.

Life	Date of birth	Date of entry into observation	Date of exit from observation	Exit due to death (Yes-1, No-0)
1	$1^{\text {st }}$ May 1972	$1^{\text {st }}$ April 2022	$1^{\text {st }}$ April 2023	0
2	$1^{\text {st }}$ July 1972	$1^{\text {st }}$ April 2022	$1^{\text {st }}$ April 2023	0
3	$1^{\text {st }}$ October 1972	$1^{\text {st }}$ July 2022	$1^{\text {st }}$ April 2023	0
4	$1^{\text {st }}$ January 1972	$1^{\text {st }}$ April 2022	$1^{\text {st }}$ July 2022	1
5	$1^{\text {st }}$ March 1973	$1^{\text {st }}$ April 2022	$1^{\text {st }}$ April 2023	0
6	$1^{\text {st }}$ December 1971	$1^{\text {st }}$ July 2022	$1^{\text {st }}$ October 2022	0
7	$1^{\text {st }}$ August 1972	$1^{\text {st }}$ April 2022	$1^{\text {st }}$ April 2023	0
8	$1^{\text {st }}$ August 1972	$1^{\text {st }}$ April 2022	$1^{\text {st }}$ September 2022	1
9	$1^{\text {st }}$ November 1972	$1^{\text {st }}$ October 2022	$1^{\text {st }}$ April 2023	0
10	$1^{\text {st }}$ June 1972	$1^{\text {st }}$ October 2022	$1^{\text {st }}$ April 2023	0

a) Estimate the constant force of mortality and probability of death using a two-state model and the data of 10 lives in the table above.
b) Assuming the maximum likelihood estimate of the constant force using a Poisson model is exactly same as estimate using the two-state model, outline the differences between the two-state model and the Poisson model when used to estimate the force of mortality or otherwise.
iv) A graduation of mortality experience has been carried out for the given population.

Age last birthday	$\widehat{\boldsymbol{q}}_{\mathbf{x}}$ using census data
37	0.0072
38	0.0078
39	0.0081
40	0.0104
41	0.0112
42	0.0114
43	0.0120

Perform test of goodness of fit for the graduated \hat{q}_{x} where Exposed Actual death data to be captured using following information:

Age nearest birthday	Year 1	Year 2	Beginning of Year 1	Beginning of Year 2	Beginning of Year 3
37	6	8	1050	1043	1053
38	6	8	1130	1123	1133
39	8	8	1060	1052	1062
40	11	9	1235	1225	1235
41	14	12	1160	1149	1159
42	13	13	1370	1357	1367
43	14	16	1240	1225	1235

Explicitly state any assumption of rate interval and degrees of freedom.
Q. 6) Claims on a mediclaim policy follow the lognormal distribution with parameters $\mu=10$ and $\sigma=0.9$. The insurer effects an individual excess of loss reinsurance treaty with a retention limit of Rs.15,000.
i) Calculate the probability that the claim paid by the reinsurer is more than Rs. 5,000 .
ii) Next year the claim amounts on these policies are expected to increase by 10%. The reinsurer wants to change the retention limit so that the probability that a claim involves the reinsurer is 5\% higher than the previous arrangement. Calculate the new retention limit.
iii) With the new retention limit in (ii), calculate the reinsurer's expected claim payment per claim next year .
Q. 7)
i) The following data is observed from $\mathrm{n}=100$ realisations from a time series:
$\sum_{i=1}^{100} x_{i}=5954.39, \sum_{i=1}^{100}\left(x_{i}-\bar{x}\right)^{2}=3832.26, \sum_{i=1}^{99}\left(x_{i}-\bar{x}\right)\left(\left(x_{i+1}-\bar{x}\right)=3628.34\right.$
Estimate using the data above, the parameters μ, α and σ from the model:

$$
\begin{equation*}
X_{t}-\mu=\alpha\left(X_{t-1}-\mu\right)+e_{t} \tag{3}
\end{equation*}
$$

where e_{t} is a white noise process with variance σ^{2}.
ii) After fitting the model with the parameters found in (i), it was calculated that the number of turning points of the residual's series e_{t} is 48 . Explain and perform significance test at 95% confidence interval on turning points whether there is evidence that e_{t} is not generated from a white noise process.
Q. 8) A generalised extreme value distribution used to model flood damage in Actuaria town, in particular the shape parameter ' γ ' used is 1 .
i) Identify the type of extreme value distribution and state it's key characteristic.
ii) Individual losses X of flood in the Actuaria town, follow a $\mathrm{Pa}(5,2)$ distribution. The maximum claim in the sample of 50 claims is defined as X_{M} which follows approximate distribution of $\operatorname{GEV}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ where $\mathrm{a}=\lambda \mathrm{n}^{1 / \alpha}-\lambda, \mathrm{b}=\lambda \mathrm{n}^{1 / \alpha} / \alpha$ and $\mathrm{c}=1 / \alpha$. Calculate the approximate and exact probability that the maximum claim is more than Rs. 4 crores and comment on GEV distribution.
iii) State the key advantage that the generalised Pareto distribution has over the generalised extreme value distribution for the extreme event of flood damage.
i) The time series X_{t} of change in temperature of country Originia is assumed to follow ARIMA(p,d,q) process defined by

$$
\mathrm{X}_{\mathrm{t}}=1+\frac{39}{28} X_{t-1}-\frac{3}{7} X_{t-2}+\frac{1}{28} X_{t-3}+e t
$$

where e_{t} follows $N(0,1)$ random variables.
Derive roots of the characteristic equation given that one of the root is 1 . Also, comment on stationarity of the process.
ii) A time series X_{t} is assumed to be stationary and to follow an ARMA $(2,1)$ process defined by:

$$
\mathrm{X}_{\mathrm{t}}=1+9 / 15 \mathrm{X}_{\mathrm{t}-1}-2 / 15 \mathrm{X}_{\mathrm{t}-2}+\mathrm{Z}_{\mathrm{t}}-2 / 7 \mathrm{Z}_{\mathrm{t}-1}
$$

where Z_{t} are independent $\mathrm{N}(0,1)$ random variables.
Find the autocorrelation function for lags $0,1,2$.
iii) Consider the $\mathrm{ARCH}(1)$ process:

$$
X_{t}=\mu+e_{t} \sqrt{\alpha_{0}+\alpha_{1}\left(X_{t-1}-\mu\right)^{2}}
$$

where e_{t} are independent normal random variables with variance $1 \&$ mean 0 .
Show that for $\mathrm{s}=1,2, \ldots \ldots, \mathrm{t}-1 . \mathrm{X}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t} \text {-s }}$ are :
a) Uncorrelated
b) Not independent
iv) Give one real life example where ARCH model can be used.
Q. 10) In the Country of Electronia, only 1 type of vehicle is used. The Government wanted to introduce electronic vehicle and thus a small scale study was conducted to analyse the performance of batteries. The initial study was conducted using 12 batteries, all the batteries were charged uniformly for 6 hours and then run them till discharge everyday. The batteries were tested for failing. The test was terminated by the Government after failure of the $8^{\text {th }}$ Battery after $34^{\text {th }}$ month. The details of battery failures were reported as below:

- 2 batteries had failed after $22^{\text {nd }}$ month
- 3 further batteries failed after $29^{\text {th }}$ month
- 2 further batteries failed after $32^{\text {nd }}$ month
- 1 further battery failed after $34^{\text {th }}$ month

Additionally, 1 battery exploded after $30^{\text {th }}$ month.
i) State with reason the type of censoring present in this study.
ii) Calculate the Kaplan-Meier estimate of the survival function based on the data provided above.
iii) Additionally, assuming Government increases the sample size also calculate approximate 95% confidence interval for $\tilde{S}(33)$. To estimate $\operatorname{var}[\tilde{S}(33)]$, state and use Greenwood's formula.
iv) State the assumptions made for above.

