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Introduction 
The indicative solution has been written by the Examiners with the aim of helping candidates. The 
solutions given are only indicative. It is realized that there could be other points as valid answers and 
examiner have given credit for any alternative approach or interpretation which they consider to be 
reasonable. 
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Solution 1: 
i) > data<-read.csv("weights.csv") 

> summary(data) 
Gender             Weights           Day        
 Length:216         Min.   : 5.00   Min.   : 1.00   
 Class :character   1st Qu.: 7.00   1st Qu.: 9.00   
 Mode  :character   Median :10.00   Median :17.00   
                    Mean   :10.22   Mean   :17.16   
                    3rd Qu.:13.00   3rd Qu.:25.25   
                    Max.   :16.00   Max.   :34.00 
 

(1) 
(1) 

  [2] 
 

ii) > weight_M <- subset(data$Weights, data$Gender == "M" , select = c(data$Weights), drop = 
FALSE) 
Alternate:  
M_subset<-data[data$Gender=="M",] 
weight_M <- M_subset$Weights 
Marks given for other valid alternate solutions.  
 
> nm <- length(weight_M) -1  /* n-1 
> sm <- sd(weight_M) 
> nm 
[1] 107 
> sm 
[1] 2.306458 
> sm*sqrt(nm/qchisq(c(0.95,0.05),nm)) 
[1] 2.075453 2.601171  

(1) 
 
 
 
 
 

   
 

(0.5) 
(0.5) 

 
 
 

 
(1) 

  [3] 

 
iii) >  mum<-12 

> xbarm <-mean(weight_M) 
> nm <- length(weight_M) 
> Statisticm <- ((xbarm-mum)/(sm/sqrt(nm))) 
> Statisticm 
[1] 3.295867 
>  1- pnorm(Statisticm) 
[1] 0.0004905918 
p- value  <5%, there is no significant evidence to accept the null hypothesis 
 
 
Alternate: 
One Sample t-test 
 
data:  weight_M 
t = 3.2959, df = 107, p-value = 0.001332 
alternative hypothesis: true mean is not equal to 12 
95 percent confidence interval: 
 12.29151 13.17145 
sample estimates: 
mean of x  
 12.73148 
p- value = .001332 <5%, there is no significant evidence to accept the null hypothesis 

(0.5) 
(0.5) 
(0.5) 

 
 

(1) 
 

(1) 
 

[Max 3] 
 
 
 

 
(2) 

 
 
 
 

(0.5) 
 
 

(1) 
[Max 3] 

   
iv) > weight_F <- subset(data$Weights, data$Gender == "F" , select = c(data$Weights), drop = 

FALSE) 
(1) 
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> nf <- length(weight_F) 
> xbarf 
[1] 7.703704 
> sf <- sd(weight_F) 
> nf 
[1] 108 
> sf 
[1] 2.079087 
> Statisticf <- ((xbarf-muf)/(sf/sqrt(nf))) 
> Statisticf 
[1] 3.517459 
> pnorm(Statisticf) 
[1] 0.0002178499 
p- value <5%, there is no significance evidence to accept the null hypothesis 
 
Alternate: 
F_subset<-data[data$Gender=="F",] 
weight_F <- F_subset$Weights 
 t.test(weight_F,mu=7,alternative = "two.sided") 
 
 One Sample t-test 
 
data: weight_F 
t = 3.5175, df = 107, p-value = 0.0006407 
alternative hypothesis: true mean is not equal to 7 
95 percent confidence interval: 
 7.307108 8.100300 
sample estimates: 
mean of x  
 7.703704 
The required p value is 0.0006407. 
p- value <5%, there is no significance evidence to accept the null hypothesis 
 

(0.5) 
(0.5) 

 
(0.5) 

 
 
 
 
 
 

(0.5) 
 
 

(0.5) 
 

(1) 
 

 
(1) 
(2) 

 
 
 
 
 
 
 
 
 

 
(1) 

 
[Max 4] 

 
v) > set.seed(2022) 

> male<-c(rnorm(10,mum,sm)) 
> female<-c(rnorm(10,muf,sf)) 
> mean(male) 
[1] 10.69983 
> mean(female) 
[1] 7.015142 
> t.test(male,female,paired=TRUE,alternative="less",mu=5) 
 
        Paired t-test 
 
data:  male and female 
t = -1.7111, df = 9, p-value = 0.06061 
alternative hypothesis: true mean difference is less than 5 
95 percent confidence interval: 
     -Inf 5.093811 
sample estimates: 
mean difference  
       3.684693 
 
Since p-value >5%,there is no strong evidence to reject null hypothesis 
The average weights used by females is 3.7kg lesser than weights used by male 
 

 
(1) 

(0.5) 
 
 
 
 

(2) 
 
 
 
 
 
 
 
 
 
 
 
 

(0.5) 
(0.5) 

[Max 4] 
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  [16 Marks] 
Solution 2: 

i)  
> abc <- c(-6,-10,3,18,-10,1,3,-13,-14,13) 
> xyz <- c(8,0,-4,10,20,8,0,10,5,-19) 
> pqr <- c(-20,19,3,13,20,7,-3,13,20,1) 
> lmn <- c(14,4,5,15,19,9,6,10,7,16) 
>  
> abc_mean = mean(abc) 
> xyz_mean = mean(xyz) 
> pqr_mean = mean(pqr) 
> lmn_mean = mean(lmn) 
>  
> print(abc_mean) 
[1] -1.5 
> print(pqr_mean) 
[1] 7.3 
> print(xyz_mean) 
[1] 3.8 
> print(lmn_mean) 
[1] 10.5 
>  
> abc_sd = sd(abc) 
> xyz_sd = sd(xyz) 
> pqr_sd = sd(pqr) 
> lmn_sd = sd(lmn) 
>  
> print(abc_sd) 
[1] 11.00757 
> print(pqr_sd) 
[1] 12.62317 
> print(xyz_sd) 
[1] 10.46476 
> print(lmn_sd) 
[1] 5.190804 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 [Max 5] 
 

ii)  
> r_abc_xyz = cor(abc,xyz) 
> r_abc_pqr = cor(abc,pqr) 
> r_abc_lmn = cor(abc,lmn) 
> r_xyz_pqr = cor(xyz,pqr) 
> r_xyz_lmn = cor(xyz,lmn) 
> r_pqr_lmn = cor(pqr,lmn) 
>  
> print(r_abc_xyz) 
[1] -0.4456345 
> print(r_abc_pqr) 
[1] -0.2842739 
> print(r_abc_lmn) 
[1] 0.2634939 
> print(r_xyz_pqr) 
[1] 0.2923746 
> print(r_xyz_lmn) 
[1] 0.2577296 
> print(r_pqr_lmn) 
[1] -0.08393819 
 

 
[3] 
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iii)  
> cor.test(abc,xyz,method="pearson",alternative="two.sided",conf.level = 0.95) 
 
 Pearson's product-moment correlation 
 
data:  abc and xyz 
t = -1.408, df = 8, p-value = 0.1968 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
 -0.8396649  0.2557513 
sample estimates: 
       cor  
-0.4456345  
 
> cor.test(pqr,lmn,method="pearson",alternative="two.sided",conf.level = 0.95) 
 
 Pearson's product-moment correlation 
 
data:  pqr and lmn 
t = -0.23825, df = 8, p-value = 0.8177 
alternative hypothesis: true correlation is not equal to 0 
95 percent confidence interval: 
 -0.6777458  0.5761368 
sample estimates: 
        cor  
-0.08393819  
 
 
Confidence interval for correlation coefficient between returns of ABC Oil and XYZ Airways is 
(-0.84,0.26). Since it does not contain -1, we can say that there is no possibility of a perfect 
negative correlation at 5% level of significance.  
 
Confidence interval for correlation coefficient between returns of PQR Realty and LMN Bank 
is (-0.68,0.58). Since it does not contain -1, we can say that there is no possibility of a perfect 
negative correlation at 5% level of significance.  
 

(1) 
 
 
 
 
 
 
 
 
 
 

(1) 
 
 
 
 
 
 
 
 
 
 
 

(1) 
 
 
 

(1) 
 
 
 

[4] 
iv)  

 
> pABC = 0.50 
> pXYZ = 0.50 
> pPQR = 0.75 
> pLMN = 0.25  
>  
> strat_A = pABC * abc + pXYZ * xyz 
> print(mean(strat_A)) 
[1] 1.15 
>  
> strat_B = pPQR * pqr + pLMN * lmn 
> print(mean(strat_B)) 
[1] 8.1 
 
Since, strategy B gives higher mean returns, it would be wise to go with strategy B, if mean 
returns is the metric to be targeted.  
 

(1.5) 
 
 

(0.5) 
 

 [2] 
 

v) H0: Variance of Returns from Strategy A = Variance of Returns from Strategy B 
H1: Variance of Returns from Strategy A ≠ Variance of Returns from Strategy B 
 

(1) 
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> var.test(x=strat_A,y=strat_B,conf.level = 0.90) 
 
 F test to compare two variances 
 
data:  strat_A and strat_B 
F = 0.35856, num df = 9, denom df = 9, p-value = 0.1426 
alternative hypothesis: true ratio of variances is not equal to 1 
90 percent confidence interval: 
 0.112795 1.139835 
sample estimates: 
ratio of variances  
         0.3585634  
 
 
Since the p-value 0.1426 > 10%, we have sufficient evidence to accept the null hypothesis at 
the 10% level of significance. Hence, the investor’s assumption of the two strategies being 
equally risky seems reasonable.  
 

 
 
 
 

(2)  
 
 
 
 
 
 
 
 
 
 
 
 

(1) 
 

[4] 
vi)  

> sd_A1 = (pABC^2 * abc_sd^2 + 2 * pABC * pXYZ * abc_sd * xyz_sd * -0.83 + pXYZ^2 * xyz_s
d^2)^(1/2) 
> sd_A2 = (pABC^2 * abc_sd^2 + 2 * pABC * pXYZ * abc_sd * xyz_sd * 0.26 + pXYZ^2 * xyz_sd
^2)^(1/2) 
>  
> print(sd_A1) 
[1] 3.140851 
> print(sd_A2) 
[1] 8.523165 
 
> sd_B1 = (pPQR^2 * pqr_sd^2 + 2 * pPQR * pLMN * pqr_sd * lmn_sd * -0.68 + pLMN^2 * lm
n_sd^2)^(1/2) 
> sd_B2 = (pPQR^2 * pqr_sd^2 + 2 * pPQR * pLMN * pqr_sd * lmn_sd * 0.58 + pLMN^2 * lmn
_sd^2)^(1/2) 
>  
> print(sd_B1) 
[1] 8.637509 
> print(sd_B2) 
[1] 10.27457 
 
 
The limits for standard deviation of Strategy A are (3.14, 8,52) and the limits for standard 
deviation of Strategy B are (8.64, 10.27).  
 
Based on Metric 2, since Strategy A has lower range of standard deviation, Strategy A would 
be selected.  

  [Max 4] 
vii) We develop limits for the risk-adjusted returns under Strategies A and B using the following 

code: 
> RAR_A1 = mean(strat_A)/sd_A1 
> RAR_A2 = mean(strat_A)/sd_A2 
> RAR_B1 = mean(strat_B)/sd_B1 
> RAR_B2 = mean(strat_B)/sd_B2 
>  
> print(RAR_A1) 
[1] 0.3661428 
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> print(RAR_A2) 
[1] 0.1349264 
> print(RAR_B1) 
[1] 0.9377704 
> print(RAR_B2) 
[1] 0.788354 
 
Based on the above the limits for Risk-Adjusted Return for Strategy A are (0.13,0.37) and limits 
for Strategy B are (0.79,0.94). Since Strategy B gives higher risk-adjusted returns, we should go 
for Strategy B using Metric 3.  
 
Strategy B gives higher returns and has higher risk, but it eventually ends up giving higher risk 
adjusted returns (i.e. more returns per unit of risk) as compared to Strategy A. 

 
 
 
 
 

(1) 
 
 
 
 
 

(1)  
 

[2] 

  [24 Marks] 

   
Solution 3: 

i) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
ii) 

 

 

 

 

 

 

 

 

> #i. 
> PA<-read.csv("PA_Data.csv") 
> model1<-glm(Claim~Gender*Health+Age,family=poisson(lin="log"),data=PA) 

 

 
> summary(model1) 
Call: 
glm(formula = Claim ~ Gender * Health + Age, family = poisson(lin = "log"),  
    data = PA) 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-1.40121  -0.78101   0.03472   0.42900   1.37735   
 
Coefficients: 
                          Estimate Std. Error z value Pr(>|z|)   
(Intercept)                0.17452    0.95762   0.182   0.8554   
GenderM                    0.06235    0.46853   0.133   0.8941   
HealthNonDiabetic         -1.31680    0.64556  -2.040   0.0414 * 
Age                        0.02248    0.02052   1.095   0.2734   
GenderM:HealthNonDiabetic -0.10401    0.82008  -0.127   0.8991   
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 30.147  on 19  degrees of freedom 
Residual deviance: 13.179  on 15  degrees of freedom 
AIC: 62.146 
 
Number of Fisher Scoring iterations: 5 

 
>  
> #linear predictor for Model 1 is 
> # a+b1X1+b2X2+b3X3+b4X1X2  where  
Alt: 0.17452 + .06235X1 -1.31680X2 + .02248X3 -.10401X1X2 
> # X1 = 0 for Female Gender and 1 for Male Gender 
> # X2 = 0 for Diabetic and 1 for Non Diabetic 
> # X3 is Age 
> # X1X2 indicates interaction term between Gender and Health Condition 
>  

  
(1) 
(2)  

 
 

(1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[Max 4] 
 
 
 

(1) 
 

(1) 
(1) 

(0.5) 
(0.5) 

[Max 3] 



IAI                                         CS1B-1222 

     Page 8 of 13 

 

 

 
iii) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
iv) 

 

 

 

 

 

 
 

v) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
> #iii. 
> # Gender is not significant 
> # Health Condition is significant 
> # Age is not significant 
> # Interaction term between Gender and Health condition is not significant 
 
 
> #Scaled deviance = 13.179 
> #AIC = - 2LogL(Model) + 2*Parameters 
> #LogL(Model) = Parameters - AIC/2  
>  
> L<- 4- model1$aic/2 
> L 
[1] -27.07302 
>  
> #Log Likelihood of Model1 is -27.07302 
>  
> #iv. 
> model2<-glm(Claim~Health+Age,family=poisson(lin="log"),data=PA) 
>  
> model2$aic < model1$aic 
[1] TRUE 
> # Model 2 AIC is lower than Model 1 showing Model2 outperforms Model1 
 
 
> #v. 
> summary(model2) 
 
Call: 
glm(formula = Claim ~ Health + Age, family = poisson(lin = "log"),  
    data = PA) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-1.38527  -0.76449   0.06081   0.36914   1.40103   
 
Coefficients: 
                  Estimate Std. Error z value Pr(>|z|)     
(Intercept)        0.21958    0.87208   0.252 0.801208     
HealthNonDiabetic -1.38710    0.39059  -3.551 0.000383 *** 
Age                0.02252    0.02037   1.106 0.268841     
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 30.147  on 19  degrees of freedom 
Residual deviance: 13.201  on 17  degrees of freedom 
AIC: 58.168 
 
Number of Fisher Scoring iterations: 5 
 
> #Age is not significant and thus can be dropped to improve the model 
 
Give full marks in case reached to same conclusion using alternate methods. 

 
 

(0.5) 
(1) 

(0.5) 
(0.5) 

 
 

(0.5) 
 
 

(2) 
 
 
 
 
 

[Max 4] 
 
 

(1) 
 
 
 

(1.5) 
[Max 2] 

 
(1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1.5) 
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vi) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
> model3<-glm(Claim~Health,family=poisson(lin="log"),data=PA) 
> summary(model3) 
 
Call: 
glm(formula = Claim ~ Health, family = poisson(lin = "log"),  
    data = PA) 
 
Deviance Residuals:  
     Min        1Q    Median        3Q       Max   
-1.22474  -0.81754  -0.07119   0.27453   1.44149   
 
Coefficients: 
                  Estimate Std. Error z value Pr(>|z|)     
(Intercept)         1.1394     0.2000   5.697 1.22e-08 *** 
HealthNonDiabetic  -1.4271     0.3887  -3.671 0.000241 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
(Dispersion parameter for poisson family taken to be 1) 
 
    Null deviance: 30.147  on 19  degrees of freedom 
Residual deviance: 14.436  on 18  degrees of freedom 
AIC: 57.403 
 
Number of Fisher Scoring iterations: 5 
 
> model3$aic < model2$aic 
[1] TRUE 
>  
> # Under Model 3. AIC reduced from 58.17 to 57.40 
>  
> #vi. 
> Student1<- data.frame(Gender ="M",Health ="Diabetic",Age=30) 
> Actuary2<- data.frame(Gender ="F",Health ="NonDiabetic",Age=50) 
>  
> # Price = 5000 * expected number of claims 
> # Price of student1 is 12240.06 for Model 2 and 15625 for Model 3  
> 5000*predict.glm(model2,newdata = Student1,type= "response") 
       1  
12240.06  
> 5000*predict.glm(model3,newdata = Student1,type= "response") 
    1  
15625  
> # Price of Actuary2 is 4797.457 for Model 2 and 3750 for Model 3  
> 5000*predict.glm(model2,newdata = Actuary2,type= "response") 
       1  
4797.457  
> 5000*predict.glm(model3,newdata = Actuary2,type= "response") 
   1  
3750  
>  
> #Under both models, Student1 price is coming higher. 
> #Since student is diabetic. Under both models, health condition 
> # is significant and for non-diabetic, parameter value is negative 
> #implying lower claims for non-diabetic 
>  

(1.5)  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(1) 
[Max 5]  

 
 

(1) 
(0.5) 

(1) 
 

(1)  
 

(0.5) 
 
 
 

(0.5) 
 
 

(0.5) 
 
 
 
 

(2) 
 
 

[Max 7] 
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vii) a) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
      b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

> #vii. a. 
>  
> Student1_mean=predict.glm(model3,newdata = Student1,type= "response") 
> Actuary2_mean=predict.glm(model3,newdata = Actuary2,type= "response") 
>  
> #price in case of modified product is 
> # 4000* expected number of claims + 2000 * probability of 1 or more claim. 
>  
> #price of Student1: 
>  
> #compute probability of 0  
> sp0<-dpois(0,Student1_mean) 
>  
> 4000*Student1_mean + 2000*(1-sp0) 
       1  
14412.13  
>  
> #price for Actuary2 
> ap0<-dpois(0,Actuary2_mean) 
> 4000*Actuary2_mean + 2000*(1-ap0) 
       1  
4055.267   

 
> #vii. b. 
> Student1_mean 
    1  
3.125   
> #For student1, expected claims are 3.125. Since, more claims are expected 
> # for Student1, reduction of payment lead to more saving than  
> # extra payment for 1st claim and thus, less price 
>  
> Actuary2_mean 
   1  
0.75  
> #Whereas for Actuary2, expected claims are 0.75 close to 1. 
> #thus, more payment expected for Actuary2 resulting in higher price. 

 
 

(0.5) 
(0.5) 

 
 

(0.5) 
 
 
 

(1.5) 
 
 

(2) 
 
 
 
 

(1) 
(1) 

 
[Max 6] 

 
 
 
 
 
 

(1) 
 
 
 
 
 

(1) 
[Max 2] 

  [33 Marks] 
Solution 4: 

i) a) We define two data sets w_draw and r_draw corresponding to the white balls and red balls 
to be matched for cases A to I.  
 
R Code and Output: 
 
> w_draw <- c(5,5,4,4,3,3,2,1,0) # white balls to be matched corresponding to cases A to I 
 
> r_draw <- c(1,0,1,0,1,0,1,1,1) # red balls to be matched corresponding to cases A to I 
 

(1) 
 
 

(1) 
[2] 

   
b) Formula for the probability mass function of Hyper-Geometric Distribution in terms of the 

arguments specified in the question is given below: 
 
P(X=x) = mCx * nC(k-x) / (m+n)Ck 

 
Where – 
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x = 0, 1, 2, 3, ……………… 
0 < p < 1  
(p = m/(m+n)) 

 
 

[2] 

   

   
c) Further we define variables prob_w_draw and prob_r_draw to determine the probabilities 

under hypergeometric distribution where w_draw and r_draw will be used as input, m will be 
the successes (5 and 1), n will be the failures (64 and 25) and k will be the number of balls 
drawn i.e. sample size (5 and 1) 
 
R Code and Output: 
 
> prob_w_draw <- dhyper(w_draw,m=5,n=64,k=5) 
> print(prob_w_draw) 
[1] 8.897974e-08 8.897974e-08 2.847352e-05 2.847352e-05 1.793832e-03 
[6] 1.793832e-03 3.707252e-02 2.826780e-01 6.784271e-01 
 
> prob_r_draw <- dhyper(r_draw,m=1,n=25,k=1) 
> print(prob_r_draw) 
[1] 0.03846154 0.96153846 0.03846154 0.96153846 0.03846154 0.96153846 
[7] 0.03846154 0.03846154 0.03846154 

 

 

 

 

 

 

 
(2)  

 
 
 

(2) 
[Max 4] 

   
d) Finally, we define prob_draw to be the multiplication of prob_w_draw and prob_r_draw 

assuming the draws are independent of each other. 
 
R Code and Output: 
 
> prob_draw = prob_w_draw * prob_r_draw # multiplication of probabilities 
> print(prob_draw) 
[1] 3.422298e-09 8.555745e-08 1.095135e-06 2.737838e-05 6.899352e-05 1.724838e-03 
[7] 1.425866e-03 1.087223e-02 2.609335e-02 

 
 
 
 
 
 
 
 

[2] 

   
e) We define another data set prize which defines the prize amounts for Cases A to I. 

 
R Code and Output: 
 
>  
> prize <- c(20000000,1000000,50000,100,100,7,7,4,4) 
> print(prize) 
[1] 2e+07 1e+06 5e+04 1e+02 1e+02 7e+00 7e+00 4e+00 4e+00 
 

 
[1] 

 

   
f) We then define amt by multiplying prob_draw with prize to arrive at the expected amount one 

can win from the lottery / jackpot. 
 
R Code and Output: 
 
> amt = prize * prob_draw 
> print(amt) 
[1] 0.068445956 0.085557445 0.054756765 0.002737838 0.006899352 0.012073867 
[7] 0.009981063 0.043488918 0.104373403 
> print(sum(amt)) 
[1] 0.3883146 

 
 
 
 
 
 
 
 
 
 

[2] 

   
g) Since, the expected prize amount is INR 0.39 and the prize of the lottery ticket is INR 0.50, 

there is a profit of INR 0.11 implicit in the ticket price. 
 

[1] 
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ii)a) Formula for the probability mass function of Binomial Distribution in terms of the arguments 

specified in the question is given below: 
 
P(X=x) = kCx * (p)x * (1-p)(k-x) 

 
Where – 
x = 0, 1, 2, 3, ……………… 
0 < p < 1  
(p = m/(m+n)) 

 
 
 
 
 
 
 
 

[2] 

   
     b) The joint probabilities and the expected prize money pay-out is re-determined using binomial 

distribution for determining matching probabilities: 
 

R Code and Output: 

 
> prob_w_draw_bin <- dbinom(w_draw,5,5/69,log=FALSE) 
> print(prob_w_draw_bin) 
[1] 1.998042e-06 1.998042e-06 1.278747e-04 1.278747e-04 3.273592e-03 
[6] 3.273592e-03 4.190197e-02 2.681726e-01 6.865219e-01 

 
> prob_r_draw_bin <- dbinom(r_draw,1,1/26,log=FALSE) 
> print(prob_r_draw_bin) 
[1] 0.03846154 0.96153846 0.03846154 0.96153846 0.03846154 0.96153846 
[7] 0.03846154 0.03846154 0.03846154 

 
> prob_draw_bin = prob_w_draw_bin * prob_r_draw_bin 
> print(prob_draw_bin) 
[1] 7.684776e-08 1.921194e-06 4.918257e-06 1.229564e-04 1.259074e-04 
[6] 3.147684e-03 1.611614e-03 1.031433e-02 2.640469e-02 

 
> amt_bin = prize * prob_draw_bin 
> print(amt_bin) 
[1] 1.53695522 1.92119403 0.24591284 0.01229564 0.01259074 0.02203379 
[7] 0.01128130 0.04125733 0.10561876 
> print(sum(amt_bin)) 
[1] 3.90914 

 

 

 

 
(1.5) 

 
 
 
 

(1.5) 
 
 
 

(1) 
 
 
 

(1) 
 

 
[Max 4] 

   
iii) If we compare binomial probabilities with hyper-geometric probabilities: 

1. For the power ball, the probabilities for all cases are same under both binomial and 
hyper-geometric distribution. 

2. For white balls, the probabilities under binomial distribution tend to be higher than 
those under hyper-geometric distribution.  

3. Due to this the expected pay-out determined using binomial distribution tends to be 
on the higher side as compared to one determined using hyper-geometric distribution. 

(1) 
 

(1) 
 

(1) 
 

[Max 2]  

   
iv) We use the formulae from the tables to determine the mean and variance for X using both 

binomial and hyper-geometric distributions. 
 

R Code and Output: 

 
> mean_x_hyper = 5 * 5/69 
> mean_x_binom = 5 * 5/69 
> print(mean_x_hyper) 
[1] 0.3623188 
> print(mean_x_binom) 
[1] 0.3623188 
>  
> var_x_hyper = 5*5*(69-5)*(69-5)/((69-1)*69^2) 
> print(var_x_hyper) 
[1] 0.3162954 
> var_x_binom = 5 * 5/69 * (1-5/69) 
> print(var_x_binom) 

 
 
 
 
 
 
 

(1 marks for 
mean) 

 
 
 

(1 marks for 
variance) 
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[1] 0.3360639 

 
Mean is the same in both cases. 
 
However, variance under hyper-geometric distribution is lower as compared to the variance 
under the binomial distribution. This is because hyper-geometric distribution is a without 
replacement alternative of the binomial distribution. Since, after a trial, that observation is not 
replaced, the variability in the results is reduced.  

 
 
 

(2 mark for 
comment 

on the 
difference.) 

[Max 3]    

   
v) In reality, for lotteries, draws are done without replacement and hence hyper-geometric 

distribution would be more suitable in modelling matching probabilities. 
 
However, as the size of the population (m+n) goes on increasing, binomial distribution 
provides a good approximation for hyper-geometric probabilities. 

(1) 
 
 

(1) 
 

[2] 

  [27 Marks] 
 

************************* 


