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Q. 1) To estimate the population variance σ2 the statistic Sn

′ 2
=  

∑(Xi−X̅)2

n
 is used rather than using 

estimator Sn
2, where n is the sample size.  

 

Find the bias of Sn
′ 2

 , when n = 13, mean is 5.24 and σ2 = 3.4224 

 

 

 

  

[3] 

   

Q. 2) Choose the correct option and provide a reason for your choice. No marks would be awarded 

if reason is not provided.  

   

 i) A multivariate model is fit with 10 explanatory variables and 100 observations. Due to 

IT restrictions the model can’t be implemented. An Actuary decided to use Principal 

Component Analysis (PCA) for reducing the dimensionality of the data set. How many 

Components will be there after fitting PCA?   

   

 A. 3  

 B. 9  

 C. 10  

 D. 100 (2) 

   

 ii) Which of the following is not a Linear Predictor?  

   

 A. Y = α + β X2  

 B. Y = α + β2 X  

 C. Y = α + β ( 
1

𝑋
  )  

 D. All of the above (2) 

  [4] 

   

Q. 3) i) For a standard normal random variable Z, derive an expression for its Moment 

Generating Function (MGF) using first principles. (3) 

   

 ii) Using the results obtained in part (i), prove that a normal variable X with mean µ and 

variance δ2, is perfectly symmetrical about its mean i.e. the coefficient of skew-ness of 

the normal variable X is equal to 0.  

   

 Hints:  

 a) Standard relationship between normal variable X and standard normal variable Z 

i.e. “Z = (X - µ) / δ” can be directly used without proof. 
  

 b) Use the fact that E (Zr) is the coefficient of the term tr / r! in the Taylor expansion. (3) 

  [6] 

   

Q. 4) A health insurance company has recently launched a new one year health insurance product 

which pays a fixed sum assured on the incidence of Heart, Cancer and Liver related ailments 

in the next one year.   

   

 Even after a claim under one ailment, coverage continues for the other ailments. A fixed 

sum assured would be paid on the incidence of the pre-defined ailment and no further claims 

can then arise for that particular ailment.   

   

 It can be assumed that these three risks are independent.   

   

 Sum Assured for Heart, Cancer and Liver related ailments are INR 20 lakhs, INR 25 lakhs 

and INR 15 lakhs respectively.   
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 The company estimates the probabilities of claim arising in the next year to be 0.01 for Heart 

related ailments, 0.02 for Cancer and 0.005 for Liver related ailments.  

   

 i) Determine, for a single policy, using suitable Bernoulli variables, the mean and standard 

deviation of the total claim amount to be paid over the next year. (2) 

   

 ii) You are informed that a claim has been reported under a policy. Given that there is a 

claim under the policy, calculate the expected pay-out on this claim. (3) 

   

 iii) Why does mean claim pay-out in part (i) differ from the expected claim pay-out in part 

(ii)? (2) 

  [7] 

   

Q. 5) Out of the 85 tosses of a coin, 40 tosses turn out to be heads.  

   

 i) Let N denote the total number of heads in 85 tosses, what is the most suitable distribution 

of N? Estimate the mean and variance of N. (2) 

   

 ii) Find out the probability that N > 40 using approximate distribution. (2) 

   

 Let the distribution of N as specified in part (i)  

   

 iii) Test the hypothesis that: 
 

H0: probability of getting heads = 0.5 v. H1: probability of getting heads > 0.5 at the 

significance level of 5% using the probability value calculated in part (ii) above. (1) 

   

 iv) Find X where P(N > X) is less than the significance level of 5% leading to rejecting the 

null hypothesis of the above test. (2) 

  [7] 

   

Q. 6) A company offers an optional basic group term insurance policy to its employees, as well 

as an accidental death benefit rider. To be covered under the accidental death benefit rider, 

an employee needs to first opt for group term insurance policy.   

   

 Let X denote the proportion of employees who have opted for group term insurance cover. 

Let Y denote the proportion of employees who have opted for accidental death benefit rider.  

   

 Let X and Y have the following joint density function f (x,y) on the region where both X 

and Y are non-negative:  

   

                              f (x,y) = 2 (x + y)  

   

 i) Clearly specify the bounds on values of X and Y for which the above joint density 

function holds true. (1) 

   

 ii) Determine the marginal density function of  X. (2) 

   

 iii) Given that 10% of the employees opt for the group term insurance policy, calculate the 

probability that less than 5% of the employees opt for the accidental death benefit rider. (4) 

  [7] 

   

Q. 7) Let the random variable X have the Poisson distribution with probability function:  
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f (x) =

𝑒−𝜆𝜆𝑥

𝑥!
 , x = 0,1,2,...  

   

 i) Show that P(X = k+1) = 
𝜆

𝑘+1
 𝑃 (𝑋 = 𝑘) , k = 0,1,2,… (2) 

   

 It is believed that the distribution of the number of claims which arise on insurance policies 

of a certain class is Poisson.   

   

 A random sample of 1,000 policies is taken from all the policies in this class which have 

been in force throughout the past year. The table shows the observed number of policies 

with 0, 1, 2, 3, 4, 5, 6, 7 and 8 or more claims during the year:   

   

 No. of Claims(k) 0 1 2 3 4 5 6 7 8+ 

No. of policies(fk) 300 365 216 70 30 16 2 1 0 
 

 

   

 For these data the Maximum Likelihood Estimate (MLE) of the Poisson parameter λ is �̂� 

=1.186  

   

   

 ii) Calculate the expected number of policies with 0, 1, 2, 3, 4, 5, 6, 7 and 8 or more claims 

during the year under the Poisson model with parameter given by the MLE above, using 

the recurrence formula of part (i) (or otherwise). (3) 

   

 iii) Perform an appropriate statistical test to investigate the assumption that the numbers of 

claims arising from this particular class of policies follow a Poisson distribution. (5) 

  [10] 

   

Q. 8) A new political party is investigating whether size of policemen impacts petty crimes. 

Following data of 9 zones of a state has been collected:  

   

 Zones A B C D E F G H I 

Policemen 178 161 140 106 171 153 142 124 37 

Cases 171 114 62 46 184 149 99 70 39 
 

 

   

 i) Calculate Spearman’s and Kendall’s correlation coefficients. (4) 

   

 ii) After investigation, party concluded that more crimes are done where more policemen 

are deployed and suggesting reduction police force. Comment on their conclusion. (2) 

   

 iii) An expert suggested party to use Pearson’s correlation coefficients instead. Compute 

Pearson’s correlation coefficient and test whether there is no correlation between 

policemen and cases.  

   

 ∑ x = 1212  , ∑ y = 934 , ∑ x2 = 178000 ∑ y2 = 120476  and ∑ xy = 140790 (6) 

  [12] 

   

Q. 9) Five years ago, an insurance company began to issue insurance policies covering medical 

expenses for dogs. The insurance company classifies dogs into three risk categories: large 

pedigree (category 1), small pedigree (category 2) and non-pedigree (category 3).   

   

 The number of claims nij in the ith category in the jth year is assumed to have a Poisson 

distribution with unknown parameter θi.   
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 Data on the number of claims in each category over the last 5 years is set out as follows:  

   

 Category Year 

∑ 𝒏𝒊𝒋

𝟓

𝒋=𝟏

 ∑ 𝒏𝒊𝒋
𝟐

𝟓

𝒋=𝟏

 1 2 3 4 5 

1 28 41 47 54 62 232 11434 

2 35 48 55 57 65 260 14028 

3 26 29 20 39 31 145 4399 
 

 

   

 Prior beliefs about θ1 are given by a gamma distribution with mean 50 and variance 25.  

   

 i) Find the Bayes estimate of θ1 under quadratic loss. (5) 

   

 ii) Calculate the expected claims for year 6 of each category under the assumptions of 

Empirical Bayes Credibility Theory Model 1. (6) 

   

 iii) Explain the main differences between the approach in part (i) and that in part (ii). (2) 

   

 iv) Explain why the assumption of a Poisson distribution with a constant parameter may 

not be appropriate and describe how each approach might be generalised. (2) 

  [15] 

   

Q. 10) An actuarial trainee fit a simple linear model to detect bus cancellation charges (Y).  

   

 As an exploratory analysis, trainee determined that correlation coefficient between Y and X  

is 0.623 as a first step.  

   

 The slope and intercept of the model are b = -5 and a = 10.  

   

 Further, after fitting the model, histogram of residuals (shown below) was prepared as per 

manager’s request:  

   

 

  

   

 i) Plot graph showing relationship between Y and X for X = -2 to 2 
 

Note: Compute Y for each X (-2,-1, 0, 1, 2) and then plot a freehand graph. (2) 

   

0

10

20

30

40

50

60

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Fr
e
q
u
e
n
cy

Residual



IAI                             CS1A-1222 

     Page 6 of 6 

 

   

 ii) Comment on the following:  

   

 a) Validity of assumption of the linear model. (2) 

   

 b) Possibility of error made by Actuarial Trainee. (2) 

   

 Trainee fits a generalised linear model to predict number of free bus cancellations for prime 

members. The following data for 20 prime members collected for 2 cities:  

   

 City I 2 2 0 0 1 0 0 0 1 0 

City II 1 2 1 0 2 1 1 0 2 2 
 

 

   

 Trainee uses Poisson distribution to analyse bus cancellation charges and fits  following 

models:  

   

 Model 1 :     log 𝜇𝑖 = 𝛼   
 

Model 2 :     log 𝜇𝑖 = 𝛼 +  𝛽 𝑥𝑖  𝑤ℎ𝑒𝑟𝑒  𝑥𝑖 =  {
1  𝑓𝑜𝑟 𝐶𝑖𝑡𝑦 𝐼 
0 𝑓𝑜𝑟 𝐶𝑖𝑡𝑦 𝐼𝐼

 
 

   

 iii) Show that Poisson distribution is a member of the exponential family of distributions. (2) 

   

 iv)   

 a) Calculate the maximum likelihood estimator for α and β under Model 1 and 2. (5) 

   

 b) Compute the probability of 3 cancellations for City I and II under Model 2. (2) 

   

 v) Compute Scaled deviance for Model 1 and 2. 
 

Note: y * log y = 0 for y=0 can be assumed. (5) 

   

 vi) Suggest which model is better by using appropriate statistic (2) 

   

 Trainee also tried another model.  

   

 
Model 3:   log 𝜇𝑖 = {

𝛿 𝑓𝑜𝑟 𝐶𝑖𝑡𝑦 𝐼
𝛾 𝑓𝑜𝑟 𝐶𝑖𝑡𝑦 𝐼𝐼

 
 

   

 vii) For Model 3, compute the following:  

   

 a) MLE for 𝛿 and  𝛾 (2) 

   

 b) AIC (Akaike’s Information Criterion)  (1) 

   

 viii) Compare Model 2 and Model 3 and comment. Are there any similarities between the 

models 2 and 3? (2) 

   

 ix) For review, Plot of Pearson residual is used. Write down its disadvantages for checking 

Poisson distribution. (2) 

  [29] 

   

 **************************  

   
 
 


