Analytics in General Insurance

28 October 2021

Predictive Modelling: Way forward -GLM with Actuarial Judgment or Machine Learning Models

Introductions

Neil Chapman

Senior Director P&C UK,

Global leader for Pricing Product Claim and

Underwriting

Kylie Chen

Director P&C APAC, Pricing Product Claim and Underwriting leader for APAC

Sipika Tandon Associate Director P&C India

Agenda

Agenda

- Context of machine learning in pricing
- Introduction to machine learning and comparison to GLMs
 - Tree-based methods
 - Decision trees
 - Random forests
 - Gradient boosting machines
 - Regression-based methods
 - Penalized regression
- Pricing applications
- How are insurers using machine learning?
- Adoption and use of machine learning in India and APAC
- Summary and Q&A

Objective: to understand the advantages and disadvantages of machine learning, and how these could be used to enhance predictive modelling alongside actuarial judgement

Context of machine learning in pricing

Who's interested in what?

Applications of machine Insurance sector

This is not new....

willistowerswatson.com © 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

www.actuariesindia.org

7

What are these machine learning methods?

www.actuariesindia.org

8

Is it really all about the method?

Is it really all about the method?

Is it really all about the method?

Data

Physical facticity E.g., height, length, weight

Mechanical nature E.g., engine size, fuel type

Qualitative descriptors E.g., body type, model range

Performance E.g., maximum speed, torque, BHP

Is it really all about the method?

Is it really all about the

willistowerswatson.com

© 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

www.actuariesindia.org ¹³

Is it really all about the method?

Factor engineering & response variables

How do you measure value?

- Rank hold out observations by their fitted values (high to low)
- Plot cumulative response by cumulative exposure

Gini

- A better model will explain a higher proportion of the response with a lower proportion of exposure
- ...and will give a higher Gini coefficient (yellow area)

Double lift chart

willistowerswatson.com

© 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

www.actuariesindia.org ¹⁷

Financial value estimate

- Errors in insurance pricing are not symmetrical
- Financial benefit can be estimated
- Consider *actual experience* in out of sample data for each percentile of old vs new model fitted values
- Estimate financial benefit that would have been attained
 - given an assumed elasticity
 - given business rules such as an assumed cap/floor approach

willistowerswatson.com

© 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

Financial value vs Gini

www.actuariesindia.org ¹⁹

Is there more to it...?

Institute of Actuaries of India

What do you use where?

Institute of Actuaries of India

It's domain expertise that helps decide

Tree-based methods

willistowerswatson.com © 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

TREE-BASED

Some machine learning methods

www.actuariesindia.org ²⁶

TREE-BASED

Focus on Trees

TREE-BASED

Institute of Actuaries of India

willistowerswatson.com © 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

www.actuariesindia.org ²⁹

Focus on Random Forests

Regression-based methods

Institute of Actuaries of India

What are these machine learning methods?

Institute of Actuaries of India

Focus on Penalized Regression

www.actuariesindia.org ³⁴

Pricing applications

willistowerswatson.com © 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

nstitute of Actuories of India

Practical applications of machine learning methods in pricing

How are insurers using machine learning?

Insights from a North American survey

willistowerswatson.com © 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

How the North American market is doing with machine learning

Top applications insurers plan to use two years from now for AI and machine learning

	Actual for 2017	Expected for 2020 (in 2017)	Actual for 2020	Expected for 2021
Build risk models for better decision making	13%	44%		
Reduce time spent by humans	11%	49%		
Better understand risk drivers	21%	44%		
Identify cases that pose higher risk	11%	46%		
Augment human-performed underwriting	7%	37%		
Identify patterns of fraudulent claims	9%	39%		
Identify bottlenecks in claim processes/Process claims more efficiently	3%	30%		

How the North American market is doing with machine learning

Top applications insurers plan to use two years from now for AI and machine learning

	Actual for 2017	Expected for 2020 (in 2017)	Actual for 2020	Expected for 2021
Build risk models for better decision making	13%	44%	26%	
Reduce time spent by humans	11%	49%	22%	
Better understand risk drivers	21%	44%	20%	
Identify cases that pose higher risk	11%	46%	14%	
Augment human-performed underwriting	7%	37%	7%	
Identify patterns of fraudulent claims	9%	39%	17%	
Identify bottlenecks in claim processes/Process claims more efficiently	3%	30%	7%	

How the North American market is doing with machine learning

Top applications insurers plan to use two years from now for AI and machine learning

	Actual for 2017	Expected for 2020 (in 2017)	Actual for 2020	Expected for 2021
Build risk models for better decision making	13%	44%	26%	60%
Reduce time spent by humans	11%	49%	22%	60%
Better understand risk drivers	21%	44%	20%	56%
Identify cases that pose higher risk	11%	46%	14%	50%
Augment human-performed underwriting	7%	37%	7%	47%
Identify patterns of fraudulent claims	9%	39%	17%	47%
Identify bottlenecks in claim processes/Process claims more efficiently	3%	30%	7%	43%

www.actuariesindia.org ⁴¹

What are the three biggest challenges preventing your company from becoming more data driven?

willistowerswatson.com

© 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

www.actuariesindia.org ⁴²

What are the three biggest challenges preventing your company from becoming more data driven?

willistowerswatson.com

© 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

www.actuariesindia.org ⁴³

How the North American market is doing with machine learning

Methods used

Base: Technical survey respondents using advanced analytics (n = 76 in 2020, n = 69 in 2017, n = 62 in 2016)

willistowerswatson.com

© 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

www.actuariesindia.org ⁴⁴

How do you determine the value of your predictive models?

How well understood are your predictive models by those who need to use them, outside of the modeling team?

Base: Total respondents using advanced analytics (n = 113 in 2020, n = 56 in 2017)

willistowerswatson.com

© 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

Institute of Actuaries of India

www.actuariesindia.org ⁴⁵

For which aspects of underwriting/pricing does your company group currently use Institute of Actuaries of India or plan to use advanced analytics?

© 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

Adoption and use of machine learning in APAC and India

Classification of Indian Market

BEHIND THE MARKET

• AT MARKET

Companies making limited use of Al/ML techniques for:
1. Actuarial
2. Claims Management/ Fraud Analytics
3. Underwriting
4. Sales

ADVANCED

Companies using AI/ML techniques for: 1. Actuarial 2. Claims Management/ Fraud Analytics 3. Underwriting 4. Sales 5. Marketing 6. Customer Support 7. Human Resources

GLM and ML in APAC

Adopting of GLM and Machine Learning in APAC

Education and skillsets

Actuary vs data scientist

willistowerswatson.com © 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

© 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

Summary and Q&A

willistowerswatson.com © 2021 Willis Towers Watson. All rights reserved. Proprietary and Confidential. For Willis Towers Watson and Willis Towers Watson client use only.

CONCLUSIONS

A more complete summary

www.actuariesindia.org ⁵³

Machine Learning in Pricing

Conclusions

- There are many forms of ML models
- New data and feature/response engineering generally add more value than new methods BUT we need to continuously explore which methods work on which problems
- Traditional measures of prediction value may not reflect applications in insurance
- And it's not all about predictive power anyway other criteria are important
- GBMs and Random Forests can provide predictive lift benefits by capturing higher order effects ... BUT
 - Can you cope with not seeing the model and instead use broad diagnostics?
 - Effort is required to expose/understand higher order effects in an expeditious manner
 - How will business leaders and regulators respond to these methods?
 - Can you file and deploy results based on these models?

Machine Learning in Pricing

Conclusions

- Penalized regression can aid in factor selection decisions and may in fact be a good method in its own right – particularly when the modeler has less of a "feel" for the data
- Machine learning in pricing is not all about improving predictive power. Consider:
 - Fast investigation of new data
 - Quick assessment and response of emerging experience

Machine Learning beyond Pricing

Conclusions

- Machine Learning is becoming established within insurance analytics
- It opens up a broader set of problems to analytics, and offers a broader tool set for familiar problems
- There's opportunity to reveal actionable, first-order insights in applications to which analytics have not been deployed previously
- We expect use of Machine Learning to continue to grow- in Pricing and beyond

Willis Towers Watson IIIIIII