Institute of Actuaries of India

Subject CS1 - Actuarial Statistics
 (Paper B)

November 2019 Examination

INDICATIVE SOLUTION

Introduction

The indicative solution has been written by the Examiners with the aim of helping candidates. The solutions given are only indicative. It is realized that there could be other points as valid answers and examiner have given credit for any alternative approach or interpretation which they consider to be reasonable.

Solution 1:

i)

```
p<-0.7
prob<-dbinom(0:10,size = 10,prob = 0.7)
probability_Densities
prob
\(0 \quad 0.0000059049\)
\(1 \quad 0.0001377810\)
20.0014467005
30.0090016920
0.0367569090
0.1029193452
0.2001209490
0.2668279320
0.2334744405
0.1210608210
0.0282475249
```

probability distribution table of number of number of wins
probability_Densities<-data.frame(No_Successes = 0:10,prob)
[4]
ii)
bar chart of the probabilities of number of wins
barplot(prob,main = "Bar Chart of Probability of Successes", xlab = "Numbe
r of Successes", names.arg $=0: 10$)
[4]

Bar Chart of Probability of Successes

iii)
mean<-sum(probability_Densities\$No_Successes*probability_Densities\$prob)
mean
\#\# [1] 7
median<-qbinom(0.5, size $=10$, prob $=0.7$)
median
\#\# [1] 7
[12 Marks]

Solution 2:

i)

```
Generate a random sample from a Lognormal distribution
set.seed(100)
data1<-rlnorm(10000,meanlog = 2,sdlog = 0.5)
# First 6 observations are shown below
head(data1)
## [1] 5.748298 7.891337 7.103172 11.512028 7.834097 8.665200
```

ii)

```
Compute the mean, median and variance of the sample
mean(data1)
## [1] 8.375649
median(data1)
## [1] 7.398463
var(data1)
## [1] 19.51361
# Formula based mean values
mean<-exp(2+0.25/2)
median<-exp(2)
var<-(exp(0.25)-1)*exp(2*2+0.25)
mean
## [1] 8.372897
Median
## [1] 7.389056
var
## [1] 19.91172
```

Interpretation: Mean, Median and Variance of the generated sample and t hose computed based on the parameters are almost equal because the samp le size is 10,000 which is pretty large. Generating a much larger sampl e will bridge those smaller differences existing between them as well
iii)

```
Generating 500 different samples of size 200 and computing their sample
means
means<-c()
set.seed(100)
for (i in 1:500){
        selected_rows<-sample(1:10000,200, FALSE)
        selected_data<-data1[selected_rows]
        sample_mean<-mean(selected_data)
        means<-c(means,sample_mean)
}
iv)

> Histogram of Sample Means
> hist(means, breaks \(=30\) )

Histogram of means


Interpretation: The sample means tend to follow a normal distribution though the actual data comes from lognormal distribution. Central limit theorem can be verified through this exercise that sample means tend to follow a normal distribution as the sample size increases. Increase in Sample size from 200 to much higher can ensure better normality of the sample means

\section*{Solution 3:}
```


Load the data file

indices<-read.csv("D:
Indices_Returns.csv")

```
i)

Compute pearson correlation coefficient and finding the most correlated and least correlated pair
correlation<-cor(indices[,3:12], method = "pearson")
correlation<-round(correlation,3)
correlation
\#\# BM CD EN FM FI HC IN IT TE UT
\#\# BM \(1.000 \quad 0.8820 .8230 .5340 .8190 .6050 .8980 .4470 .6460 .861\)
\#\# CD \(0.8821 .0000 .7830 .5810 .878 \quad 0.6370 .9150 .4340 .6960 .847\)
\#\# EN 0.8230 .7831 .0000 .4460 .7450 .5060 .7990 .3590 .6220 .793
\#\# FM 0.5340 .5810 .4461 .0000 .4850 .5100 .5110 .3030 .4100 .520
\#\# FI 0.8190 .8780 .7450 .4851 .0000 .5020 .9020 .3490 .6230 .838
\#\# HC 0.6050 .6370 .5060 .5100 .5021 .0000 .5880 .5250 .4890 .530
\#\# IN 0.8980 .9150 .7990 .5110 .9020 .5881 .0000 .3700 .6760 .882
\#\# IT 0.4470 .4340 .3590 .3030 .3490 .5250 .3701 .0000 .2910 .317
\#\# TE 0.6460 .6960 .6220 .4100 .6230 .4890 .6760 .2911 .0000 .669
\#\# UT 0.8610 .8470 .7930 .5200 .8380 .5300 .8820 .3170 .6691 .000
ii)
```

Pair with Minimum Correlation and Pair with maximum correlation
min_cor_location<-which(correlation == min(correlation))[1]
min_cor_pair<-paste(rownames(correlation)[ceiling(min_cor_location/10)]
, colnames(correlation)[ceiling(min_cor_location%%10)])
min_cor_pair

[1] "IT TE"

max_cor_location<-which(correlation == max(correlation[correlation!=1])
) [1]
max_cor_pair<-paste(rownames(correlation)[ceiling(max_cor_location/10)]
,colnames(correlation)[ceiling(max_cor_location%%10)])
max_cor_pair

[1] "CD IN"

iii)

Perform a Principal component analysis of the sectoral return values PCA_corr<-princomp(indices[,3:12])
summary (PCA_corr)
\#\# Importance of components:
\#\# Comp. 1 Comp. 2 Comp. 3 Comp. 4
\#\# Standard deviation 0.21061420 .067637280 .058254060 .04631607

```
## Proportion of Variance 0.7294045 0.07522554 0.05580143 0.03527414
## Cumulative Proportion 0.7294045 0.80463008 0.86043151 0.89570565
##
## Standard deviation 0.04255566 0.03735608 0.03326497 0.03093065
## Proportion of Variance 0.02977884 0.02294646 0.01819564 0.01573154
## Cumulative Proportion 0.92548448 0.94843094 0.96662658 0.98235812
## Comp.9 Comp.10
## Standard deviation 0.023803102 0.022500987
## Proportion of Variance 0.009316657 0.008325228
## Cumulative Proportion 0.991674772 1.000000000
```

Alternatively instead of using princomp, the student can use prcomp as well.

```
PCA_corr_1<-prcomp(indices[,3:12])
summary(PCA_corr_1)
## Importance of components:
## PC1 PC2 PC3 PC4 PC5 P6
## Standard deviation 0.2113 0.06784 0.05843 0.04646 0.04269 0.0377
## Proportion of Variance 0.7294 0.07523 0.05580 0.03527 0.02978 0.0225
## Cumulative Proportion 0.7294 0.80463 0.86043 0.89571 0.92548 0.9483
## PC7 PC8 PC9 PC10
## Standard deviation 0.03337 0.03103 0.02388 0.02257
## Proportion of Variance 0.01820 0.01573 0.00932 0.00833
## Cumulative Proportion 0.96663 0.98236 0.99167 1.00000
```


iv)

Number of PCA components with Eigen value more than 1
sum(PCA_corr\$sdev^2/sum(PCA_corr\$sdev^2) $>(1 / 10)$)
\#\# [1] 1

OR Alternatives

sum(PCA_corr_1\$sdev^2/sum(PCA_corr_1\$sdev^2)>(1/10))
\#\# [1] 1

v)

proportion of total variation explained by the first two principal comp onents
sum(PCA_corr\$sdev[1:2]^2)/sum(PCA_corr\$sdev^2)
\#\# [1] 0.8046301
[1]

OR Alternatively

sum(PCA_corr_1\$sdev[1:2]^2)/sum(PCA_corr_1\$sdev^2)
\#\# [1] 0.8046301
vi)

Paiwise correlations of the transformed components round(cor(PCA_corr\$scores), 3)

\#\#	Comp. 1	Comp. 2	Comp. 3	Comp. 4	Comp. 5	Comp. 6	Comp. 7	Comp. 8	Comp. 9
\#\# Comp. 1	1	0	0	0	0	0	0	0	0
\#\# Comp. 2	0	1	0	0	0	0	0	0	0

\#\# Comp. 3	0	0	1	0	0	0	0	0	0
\#\# Comp. 4	0	0	0	1	0	0	0	0	0
\#\# Comp. 5	0	0	0	0	1	0	0	0	0
\#\# Comp. 6	0	0	0	0	0	1	0	0	0
\#\# Comp. 7	0	0	0	0	0	0	1	0	0
\#\# Comp. 8	0	0	0	0	0	0	0	1	0
\#\# Comp. 9	0	0	0	0	0	0	0	0	1
\#\# Comp. 10	0	0	0	0	0	0	0	0	0
\#\# Comp. 10									

\#\# Comp.1	0
\#\# Comp. 2	0
\#\# Comp.3	0
\#\# Comp.4	0
\#\# Comp. 5	0
\#\# Comp.6	0
\#\# Comp. 7	0
\#\# Comp.8	0
\#\# Comp. 9	0
\#\# Comp.10	1

OR Alternatively

round (cor (PCA_corr_1 $\$ x), 3)$										
\#\#	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8	PC9	PC10
\#\# PC1	1	0	0	0	0	0	0	0	0	0
\#\# PC2	0	1	0	0	0	0	0	0	0	0
\#\# PC3	0	0	1	0	0	0	0	0	0	0
\#\# PC4	0	0	0	1	0	0	0	0	0	0
\#\# PC5	0	0	0	0	1	0	0	0	0	0
\#\# PC6	0	0	0	0	0	1	0	0	0	0
\#\# PC7	0	0	0	0	0	0	1	0	0	0
\#\# PC8	0	0	0	0	0	0	0	1	0	0
\#\# PC9	0	0	0	0	0	0	0	0	1	0
\#\# PC10	0	0	0	0	0	0	0	0	0	1

Interpretation

The pairwise correlation between the components after the PCA is performed should be zero as PCA is a way to deal with highly correlated variables. I $f \mathrm{~N}$ variables are highly correlated than they will all load out on the SA ME Principal Component (Eigenvector) and they will be uncorrelated with ot her components (All these components are orthogonal). Hence the correlatio ns will be zero between the components
vii)

```
Scree Plot
screeplot(PCA_corr,type = "l")
```


OR Alternatively

```
screeplot(PCA_corr_1,type = "l")
```

PCA_corr_1

Interpretation: Number of significant components is 1 as the scree plot almost flattened out after the second component

Solution 4:

\# Load the data file
indices<-read.csv("D:
Indices_Returns.csv")
i)

```
number of months with negative Sensex returns as a proportion of total
number of months
negative_Sensex<-sum(indices$Sensex<0)
negative_Sensex
## [1] 69
```

```
proportion_neg<-negative_Sensex/nrow(indices)
proportion_neg
```

\#\# [1] 0.4207317
ii)

Test whether the proportion of months with negative Sensex returns is L ess than 50% at 95% confidence level as well as at 99% confidence level
binom.test(negative_Sensex, nrow(indices), p=0.5,alternative = "less")
\#\#
\#\# Exact binomial test
\#\#
\#\# data: negative_Sensex and nrow(indices)
\#\# number of successes $=69$, number of trials $=164, \mathrm{p}$-value $=$
\#\# 0.02529
\#\# alternative hypothesis: true probability of success is less than 0.5
\#\# 95 percent confidence interval:
\#\# 0.00000000 .4878846
\#\# sample estimates:
\#\# probability of success
\#\# 0.4207317
Interpretation: p-value corresponding to the test is 0.02529 . So the nu 11 hypothesis of Proportion of Negatives is at least 50% is rejected at 95\% Confidence level but is failed to be rejected at 99\% Confidence lev el
iii)

```
Classify the monthly returns of FI and IT
FI<-ifelse(indices$FI<=quantile(indices$FI,0.25), "Low",ifelse(indices$F
I>quantile(indices$FI,0.75), "High", "Medium"))
IT<-ifelse(indices$IT<=quantile(indices$IT,0.25),"Low",ifelse(indices$I
T>quantile(indices$IT,0.75), "High","Medium"))
table(FI,IT)
\begin{tabular}{llrrr} 
\#\# & \multicolumn{4}{c}{ IT } \\
\#\# & FI & High & Low & Medium \\
\#\# & High & 14 & 8 & 19 \\
\#\# & Low & 3 & 18 & 20 \\
\#\# & Medium & 24 & 15 & 43
\end{tabular}
```

iv)

Test if the returns of $F I$ and IT sectors are independent of each other chisq.test(FI,IT)
\#\#
\#\# Pearson's Chi-squared test
\#\#
\#\# data: FI and IT
\#\# X-squared $=15.146, d f=4, p$-value $=0.004407$
Interpretation

- p-value < 0.05 indicating the rejection of null hypothesis of independe nce of returns of both the sectors
- There is a lot of interdependence in the sectoral returns
- There were very few instances where one sector's returns were below the Q1 and the other sector's returns were above Q3

The numbers in the diagonals are much higher to the ones in the off diagonals indicating the strength of the relationship
v)

Test whether the returns of FI sector are significantly higher compared to that of IT Sector
t.test(indices\$FI,indices\$IT, alternative = "greater")
\#\#
\#\# Welch Two Sample t-test
\#\#
\#\# data: indices\$FI and indices\$IT
\#\# $\mathrm{t}=0.22935, \mathrm{df}=314.81, \mathrm{p}$-value $=0.4094$
\#\# alternative hypothesis: true difference in means is greater than 0
\#\# 95 percent confidence interval:
\#\# -0.012103 Inf
\#\# sample estimates:
\#\# mean of x mean of y
\#\# 0.0106743900 .008720122
Interpretation

- p-value $=0.4094>0.05$ indicates failure to reject the null hypothesis of the return of FI not greater than that of IT sector at 95% confidenc e level
- There is no sufficient evidence to infer that the returns of FI sector are significantly higher than that of IT Sector
[20 Marks]

Solution 5:

i)

Creation of new column called Sensex_Direction
indices<-read.csv("D:
Indices_Returns.csv")
indices\$Sensex_Direction<-ifelse(indices\$Sensex>0, "Positive", "Negative")
indices\$Sensex_Direction<-as.factor(indices\$Sensex_Direction)
ii)

Fit the model and display the summary
model1<-glm(Sensex_Direction~BM+CD+EN+FI+FM+HC+IN+IT+TE+UT,data = indic es, family = binomial(link = "logit"))
\#\# Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred summary(model1)

```
##
## Call:
## glm(formula = Sensex_Direction ~ BM + CD + EN + FI + FM + HC +
## IN + IT + TE + UT, family = binomial(link = "logit"), data = ind
ices)
##
## Deviance Residuals:
## Min 1Q Median 10 3Q Max
## -2.27544 -0.00117 0.00000 0.01354 1.75651
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.0086 0.7315 -1.379 0.16796
## BM 7.7977 16.5255 0.472 0.63703
## CD -87.5335 42.6785 -2.051 0.04027 *
## EN 93.9675 38.3193 2.452 0.01420 *
## FI 172.8807 60.8192 2.843 0.00448 **
## FM 41.1745 20.1436 2.044 0.04095 *
## HC -6.4294 13.9394 -0.461 0.64463
## IN 4.1735 18.2152 0.229 0.81877
## IT 78.3494 30.9307 2.533 0.01131 *
## TE 29.9111 13.4184 2.229 0.02581 *
## UT -14.4767 23.0602 -0.628 0.53015
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 223.213 on 163 degrees of freedom
## Residual deviance: 32.905 on 153 degrees of freedom
## AIC: 54.905
##
## Number of Fisher Scoring iterations: 11
```

iii)

Sectors significantly impacted

- Sectors which have significantly impacted the direction of Sensex retur ns are CD, EN, FI, FM, IT and TE at 95\% Confidence level
- But only FI has impacted the Sensex direction at 99% Confidence level
iv)

Relationship between the residual deviance and AIC

- all.equal(AIC(model1), model1\$deviance+2*11)
- (11 number of model parameters (the number of variables in the model pl us the intercept))
\#\# [1] TRUE
v)

Plot the residuals of Model plot(model1\$residuals)


```
which(model1$residuals==min(model1$residuals))
## 41
## 41
indices$Month[which(model1$residuals==min(model1$residuals))]
## [1] Jun-09
## 164 Levels: Apr-06 Apr-07 Apr-08 Apr-09 Apr-10 Apr-11 Apr-12 ... Sep
-19
```

[4]
vi)

Interpretation

- As the residual deviance came down significantly from Null Deviance of 223.21 to 32.90, the variables are able to classify the direction appro priately
- One huge outlier (Jun-09) can impact the accuracy of the result (Removi ng this may reduce the residual deviance further)
- The independent variables are not independent and they are interdepende nt (Correlations are very high among the sectors). Hence the standard e rrors may not be appropriate

As this data is a time series data serial correlation between the observat ions need to be considered and the model may have to be fitted after remov ing serial correlation.
vii)

Remove the variables that do not impact the model model2<-update(model1,~.-BM-HC-IN-UT)
\#\# Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred summary (model2)

```
##
## Call:
## glm(formula = Sensex_Direction ~ CD + EN + FI + FM + IT + TE,
## family = binomial(link = "logit"), data = indices)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.08262 -0.00132 0.00000 0.01757 1.84630
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.9623 0.6803 -1.414 0.15722
## CD -98.1771 37.5952 -2.611 0.00902 **
## EN 94.2632 33.9930 2.773 0.00555 **
## FI 174.4732 53.3659 3.269 0.00108 **
## FM 37.7105 15.1808 2.484 0.01299 *
## IT 年 [l.7460 26.1203 3.015 0.00257 **
## TE 30.7688 11.8875 2.588 0.00964 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 223.213 on 163 degrees of freedom
## Residual deviance: 33.646 on 157 degrees of freedom
## AIC: 47.646
##
## Number of Fisher Scoring iterations: 10
```

viii)

```
anova(model1,model2,test = "Chisq")
## Analysis of Deviance Table
##
## Model 1: Sensex_Direction ~ BM + CD + EN + FI + FM + HC + IN + IT + TE+
## UT
## Model 2: Sensex_Direction ~ CD + EN + FI + FM + IT + TE
## Resid. Df Resid. Dev Df Deviance Pr(>Chi)
## 1 153 32.905
## 2 157 33.646 -4 -0.74102 0.9462
```

Interpretation

- p-value of the comparison is $0.94>0.05$ thus not rejecting the null hy pothesis of no significant difference between the two models. So the mo del did not improve significantly based on the friend's suggestion
[4]
[30 Marks]

