Institute of Actuaries of India

Subject CM1A – Actuarial Mathematics (Paper A)

November 2020 Examination

INDICATIVE SOLUTION

Introduction

The indicative solution has been written by the Examiners with the aim of helping candidates. The solutions given are only indicative. It is realized that there could be other points as valid answers and examiner have given credit for any alternative approach or interpretation which they consider to be reasonable.

Solution 1:

i)	A stochastic model runs many different investment scenarios, where the future	
	investment returns are governed by a probability distribution function. Some of those investment scenarios will show poor investment performance,	[0.5]
	where the fund value falls below the original premium level.	[0.5]
	In these scenarios the cost of the money back guarantee will result in a negative	
	cash flow to the company.	[0.5]
	I ne company would run many simulations and the cost of the guarantee	[0 E]
	As a result, the company will recognize the need to charge a higher annual	[0.5]
	management charge for offering the guarantee.	[0.5]
	The stochastic model is clearly superior in that it can correctly determine the nee	ed
	for such a charge.	[0.5] [3]
ii)	A deterministic result on best estimate assumptions could be compared	[]
,	with the mean and median outcomes from a stochastic approach.	
	A deterministic model may also be used to calculate the expected or median outcome, with a	
	stochastic approach being used to estimate the volatility around the central outcome.	
		[2]
	[5 M	arks]
Solution 2:	Considuate analysis may be corriad out at an individual nation level	
	and at a portfolio level.	
	At an individual policy level, sensitivity analysis allows the company to	
	understand the impact of mis-estimating parameter values in the model.	
	It can help show what the reductions would be in profits emerging, return on capital or other metrics targeted	
	This may help assess what margins may be included in the	
	parameter values for the risk that are not borne out in reality.	
	At a portfolio level, sensitivity analysis can be used to assess the	
	impact of shifts in mix of business.	
	Some parts of the portfolio may be more profitable than others and this analysis	
	will highlight the possible impact on overall profitability of the product.	
	Sensitivity analysis on the volume of business can also be used to	
	This may be useful to validate the viability of any development expenditure	
	associated that may be associated with the pricing exercise.	
	This can also help the company to understand the possible risk to	
	its capital position if volumes are more than expected.	
	[4 M	arks]
Solution 3:		
	Answertig	

Answer : (c) Year t interest is i ()] = 1- ()=1-Year (t+1) principal repaid is 1- (1-) = X= 1- + = 1+ (1-v) = 1+ d

Solution 4:

 [3 Marks]

= 202.1273

[4]

[1]

[5 Marks]

[4 Marks]

ii) The expected cost of claim is lower for customer A as he has been subject of medical underwriting. This is as expected as purpose of underwriting is to screen out bad risks and company is more aware of state of health of customer A.

Difference = 202.12 - 173.3 = 28.8 = 29 (rounded to nearest integer)

We will use Select Mortality rates for Policyholder A and Ultimate Mortality

rates for Policyholder B to reflect levels of underwriting.

Expected cost of claims for customer A

Solution 6:

Solution 5: i)

- a. Yes, as this would form part of indirect expenses of the Company and would be included in the expense assumption.
- b. Yes, but only for competitive reasons to ensure premium is not out of line with the market. This will therefore act as a reasonableness check on the premium rate.
- c. Yes, to allow for expected inflation on current costs of the company over the 10 year term of the policy.
- d. Yes, to the extent this affects the choice of interest rate for discounting cash flows.

Solution 7:

Answer : (c)

[4 Marks]

 $= v - \frac{1}{1 - \frac{1}$

Let yield to maturity be = i per annum. Then, $94 = 4(v^{0.5} + v + v^{1.5} + v^2 + v^{2.5)} + 104v^3$; where v = 1/(1+i)At i = 10%, RHS = 95.51 At i = 11%, RHS = 93.19 So, interpolating i ~ 10% + (95.51 - 94)* 1% / (95.51 - 93.19) = 10.65%

Solution 8:

Answer : (b)

A. Simple bonus at the end of 4 years = 4.5% * 500,000 * 4 = 90,000

B. Compound bonus = 500,000 (1+4%)^4 - 500,000 = 84,929

End of	Bonus on sum	Bonus on past bonus	Total accrued bonus
year	assured		
1	20,000	0	20,000
2	20,000	=20,000 * 5% = 1,000	=20,000 + 20,000 + 1,000 = 41,000
3	20,000	= 41,000 * 5% = 2050	63,050
4	20,000	= 63,050*5% = 3153	86,203

So, A > C > B

Solution 9:

i) The Death Strain at risk per policy is:

[0 – (payment due 31.03.2020 + reserve @ 31.03.2020] = -250,000 * PV of annuity at	
31.03.2020	[1]
Expected DS = -q65 *1,000*250,000*PV of annuity at 31.03.2020	
= -(0.004681)(250,000,000)(14.494) = -16,961,600	[1]

Actual DS = −5*250,000* PV of annuity at 31.03.2020 = −18,117,500	[1]
Profit = EDS - ADS = -16.961.600 + 18.117.500 = 1.155.900 profit	[1]

ii) Construct a multiple decrement table.

Age	No. alive	No. deaths	No. Withdrawals over	No. Withdrawals at
			the year	the year end
20	100,000	97.50	4997.5	4745.25
21	90,159.75	87.90		

 At age 20, no. of deaths = 100000*0.001(1-0.5*0.05) = 97.50
 [1]

 no. of withdrawals over year = 100000*0.05*(1-0.5*.001) = 4997.5
 [1]

 no. of withdrawals at year end = 100000*(1-0.05)*(1-0.001)* 0.05 = 4745.25
 [1]

 At age 21, no. of deaths = 90159.75*0.001(1-0.5*0.05) = 87.90
 [1]

 Required probability = 87.90/100000 = 0.000879
 [1]

 [5]
 [9 Marks]

Solution 10

i) Answer:b)

Present value of benefits: = Immediate payment on death + benefit on maturity + benefit on completion of premium term [4 Marks]

[4]

[4 Marks]

```
=200,000 A<sup>1</sup><sub>30:10</sub> (continuous) + 110% * 100,000 A<sub>30:10</sub><sup>1</sup> + 5% *
    100,000 * A<sub>30:5</sub><sup>1</sup> Now,
    A^{1}_{30:10} (continuous) = (1+6%) ^{1/2} * A^{1}_{30:10}; where
    A^{1}_{30:10} = A_{30} - v^{10} I_{40} / I_{30} A_{40} = 0.07328 - 1.06^{(-10)} * 9856.2863/9925.2094 * 0.12313
    = 0.005002304
    So, A<sup>1</sup><sub>30:10</sub> (continuous) = 0.005150187
    A_{30:10}^{1} = I_{40} / I_{30} * 1.06^{(-10)} = 9856.2863/9925.2094 * 1.06^{(-10)}
    = 0.554517
    A_{30:5}^{1} = I_{35} / I_{30} * 1.06^{(-5)} = 9894.4299/9925.2094 * 1.06^{(-5)} =
    0.7449408 Based on the above, present value of benefits =
    = 200,000 * 0.005150187 + 110% * 100,000 * 0.554517 + 5% * 100,000 * 0.7449408
    =65,752
                                                                                                                 [4]
ii) Let the annual premium = P
    Present value of premium = present value of benefits + present value
    of expenses + present value of commissions + profit loading
                                                                                                                 [1]
    Present value of premiums = P ä<sub>30:5</sub>;
    Where ä30:5 = ä30 - v<sup>5</sup> * 5p30 * ä35 = 16.372 - 1.06^(-5) * 9894.4299/ 9925.2094 * 15.990
             = 4.460396
    Present value of premiums = P x 4.460396;
                                                                                                                 [2]
    Present value of benefits = as calculated in part a = 65,752
    Present value of expenses = 15% * P + (2% * P * a<sub>30:4</sub>) + 500 * a<sub>31:9</sub> *
                                                                                                                 [1]
    1p_{30} * v Where a_{30:4} = a_{30} - v^4 * 4p_{30} * a_{34} = (\ddot{a}_{30} - 1) - v^4 * l_{34} / l_{30} * (\ddot{a}_{34} - 1)
    = (16.372-1) - 1.06^(-4) * 9900.9645/9925.2094 *
    (16.075-1) = 3.460357
                                                                                                                 [1]
    And.
    Where a_{31:9} = a_{31} - v^9 *_{9}p_{31} * a_{40} = (\ddot{a}_{31} - 1) - v^9 * l_{40} / l_{31} * (\ddot{a}_{40} - 1)
    =(16.304-1) - 1.06^(-9) * 9856.2863/9919.3535 * (15.491-1)
    = 6.78133
                                                                                                                [1]
    And,
    1p30 = 1-q30 = 1 - 0.000590 = 0.99941
                                                                                                              [0.5]
    So, present value of expenses =
    = 15% * P + 2% * P * 3.460357 + 500 * 6.78133 * 0.99941 / 1.06
    =0.219207 P + 3196.85
                                                                                                                [1]
    Present value of commissions = 10% * P + (5% *
    P) * a<sub>30:4</sub> = P * (0.1 + 0.05 * 3.460357) = 0.273 * P
                                                                                                                [1]
    Profit loading = 10% * P
                                                                                                              [0.5]
    So, as per principle of equivalence, we have:
    4.460396 P = 65,752 + 0.219207 P + 3196.85 + 0.273 * P +
    10% * P Therefore, P = 17825
                                                                                                                [1]
```

[10]

	= 100,000 * 110% * 12.5% * äıo * A₃₀։ıo ¹ Where äıo = 7.3601* 1.06 = 7.8017	[0.5]
	And A _{30:10} ¹ = 0.554517 (calculated in part i) So, PV of maturity benefit = 100000 * 110% * 12.5% * 7.8017 * 0.554517 = 59.485 From part i).	[1]
	PV of maturity benefit in original policy = 110% * 100000 * 0.554517 = 60,996 Since there is a reduction in value of maturity value, there will be a reduction in premium amount as well.	[0.5]
	To determine effective interest rate, we need to solve for i in equation: 110,000 = 12.5% * 110,000 * ä10 8= ä10	[0.5]
	8 = a9 + 1	
	$7 = (1 - \sqrt{9}) / 1$ RHS = 7.10 when i = 5% and is 6.9522 when i = 5.5%. Interpolating, we get	
	that i = 5.3% So, interest rate guaranteed to policyholder is 5.3%	[1.5] [4]
Solution	11.	[18 Marks]
Solution	i) Total Population = 10,00,000	
	Number of infected cases at t=0: 10,00,000 *0.5 /	[0.5]
	1000 = 500 Number of infected cases at t =1:	
	$=500^{+}$ (1)	[0.5]
	= 500 ^{**} - = 500 *1.1052	[0.5]
	= 553 rounded to nearest integer	[0.5]
	Number of infected cases at t =2:	
	=553* ⁽ , ,)	[0.5]
	=553* [·]	[0.5]
	= 553 *2.3989	[0.5]
	= 1327 rounded to nearest integer	[0.5]
	Number of infected cases at t =3:	
	=1327* ^{(.})	[0.5]
	=1327* []	[0.5]
	=1327 *1.2214	[0.5]
	= 1621 rounded to nearest integer	[0.5] [61
i	i)	[o]
	Death rate = 1% of the average number of infected policyholders during the month.	
	Number of deaths and claim payments in 1 st month:	[0 F]
	Average population for first month = $(500 + 553)/2 = 527$ Dooths in first month = 527 *1% = 5 to poprost integer	[0.5] [0.5]
	Claim amount payable = $50,000 \times 5 = 2,50,000$	[0:0]
	Number of deaths and claim navmonts in 2 nd months	
	Average population for second month = (553 + 1327)/2 = 940	[0.5]
	Deaths in second month = 940 *1% = 9 to nearest integer	[0.5]

	Claim amount payable = 50,000 * 9 = 4,50,000	[1]
	Number of deaths and claim payments in 3^{rd} month: Average population for third month = $(1327+1621)/2 = 1474$ Deaths in third month = $1474 *1\% = 15$ to nearest integer Claim amount payable = $50,000 * 15 = 7,50,000$	[0.5] [0.5] [1] [6]
iii)		
-	Initial expenses: Cost of purchasing laptops:= 5* 35,000 = 1,75,000 Cost of purchasing data card: 20 * 400 = 8,000 Cost of security features installation : 2,00,000 Accumulated initial expense at the end of 3 months	[0.5] [0.5]
	$i_m = i_m^{(12)} / 12 = 1\%$ per month, where $i_m^{(12)} = 12\%$ = (1,75,000 + 8,000 + 2,00,000)*1.01 ^{^3} = 3,94,605	[0.5] [0.5] [0.5]
	Recurring expenses:	
	= 500 *{ 1.01^{2} + 1.01^{1} + 1} * 20 = 30,301	[0.5] [0.5]
	Accumulated maintenance expense of digitisation: = 20,000 *{ 1.01 ^{^2} + 1.01 ^{^1} + 1} = 60,602	[0.5] [0.5]
	Accumulated fumigation expense: = 5000 *{ 1.01 ^{^3} + 1.01 ^{^2} + 1.01} = 15,302	[0.5] [0.5]
	Total accumulated expenses, both initial and recurring	
	= 3,94,605 + 30,301 + 60,602 + 15,302 = 5,00,810	[0.5]
	Total accumulated claims at the end of 3 months: = 2,50,000 * 1.01 ^{^2} + 4,50,000 * 1.01 + 7,50,000 = 14,59,525	[0.5] [0.5]
	Capital repayment with Interest charged on capital at the end of 3 months: = 10,00,00,000 * (1+ 3 * ic) where $i_c = i_c^{(12)}/12 = 0.06/12$ = 10,15,00,000	[0.5] [0.5]
	Accumulated capital at end: = 10,00,00,000 * (1.01) ^{^3}	
	= 10,30,30,100	[0.5]
	Fund available at end of 3 months after capital repayment with interest: = 10,30,30,100 - 10,15,00,000 = 15,20,100	[0 E]
	= 13,30,100	[0.5]

	Total expen = Total accu = 5,00,810 +	ses plus claims: umulated Expenses + · 14,59,525	Total a	ccumul	ated c	laims		[0.5]
	Surplus at t = 15,30,100 =- 4,30,235	he end of 3 months: - 19,60,335						
	Hence, the ar	rangement is not viable a	nd addit	ional fun	d need t	to be borrowed.		[0.5] [10]
iv)								
	Likely capit	al to be borrowed:	^ 2					
	Interest ear Interest paid Capital to b	ned on capital = (1.01 on capital = 0.06/12 * 3 = e borrowed	³ -1) = = 0.015	0.03030	1			[0.5] [0.5]
	= Total expe	enses including claims / (0.030301 – 0.015)	s / (Inte	rest ear	ned –	Interest paid)		
	= 12,81,18,10	0 to the nearest hundred.						[1]
								[2] [24 Marks]
Solution 12:								
	Annual prei	mium 100,000.00						
	Risk discou	int rate 8.0%						
	Allocation %	% (1st yr) 90.0%						
	Allocation %	% (2nd yr +) 101.50%						
	Interest on	Unit investments 6.0%						
	Interest on r	10n-unit reserves 4.0%						
	Man charge	0.50%						
	B/O spread	5.0%						
	Minimum de	eath benefit 5,00,000						
			INR		%prm		Total	
	Initial exper	nse /commission	2500		20.0%		12500	
	Renewal ex Multiple dee	pense/commission crement table:	500		4.5%		5000	
	x	q ^d x		q ^s ×				
	40	0.000788		0.10				
	41	0.000962		0.05				
	42	0.001104		0.05				
	43	0.001208		0.05				
	X	(aq) ^ч ×		(aq) ^s x	~	(ap)	t-1(ap)	
	40	0.000/49		0.0999	6	0.899291	1.000000	
	41	0.000938		0.0499	8 7	0.949086	0.899291	
	42			0.0499	(7	0.948951	0.803504	
	43	U.UU11/0		0.0499	1	U.9400JZ	v.ov9934	

i)									
	Answer : a)								
	Unit fund (per policy at sta	it fund (per policy at start of year)							
		yr 1	yr 2	yr 3	yr 4				
	value of units at								
	start of year	0	90,177	196809 309274	1				
	alloc	90,000	101,500 101,5	500 101,5	00				
	B/O	4,500	5,075	5075	5,075				
	interest	5,130	11,196	17,594	24,342				
	management charge	453	989	1,554	2,150	Г <i>А</i> Л			
	value of units at year end	90,177	196,809	309,274	427,891	[4]			
11)									
	Answer: a)								
	Cash flows (per policy at s	tart of year)	_		_				
		yr 1	yr 2	yr 3	yr 4				
	unallocated premium	10,000	-1,500.00	-1,500	-1500.00				
	B/O spread	4,500	5,075.00	5,075	5075.00				
	Expenses and commission	12,500	5,000.00	5,000 5000.	.00				
	interest	80	-57.00	-57.00	-57.00				
	man charge	453	989	1,554	2150.20				
	extra death benefit	307	284	205	85				
	end of year cashflow	2226	-777	-133	583	[5]			
						[]]			
III)									
	probability in force	1	0.899291	0.853504	0.809934				
	discount factor	0.925925	0.857338	0.793832	0.735029				
	expected p.v. of profit	1718.98							
	Premium signature	100000	83267.69	73174.25	64295.17				
	Expected p.v. of premiums	320,737.09							
	Profit Margin	0.54%				[3]			
iv)									
	Answer: a)								
	To calculate the expected p	rovisions at t	he end of each	year we have (utilising the end of				
	year cashflow figures and de	crement table	s in (i) above):						
	2V=133/1.04=127.88								
	Cashflow is year 2 = -777-(ap)41**2V							
	=>Cashflow is year 2 = -77	7-(ap)₄1**127	.88 = -898.37						
	=> 1V = 898.37/1.04								
	=>1V = 863.82								
	These need to be adjusted a	as the question	on asks for the	values in respe	ct of the beginning				
	of the year. Thus we have:	•		•					
	Year 2 127.88(ap)41 = 121.37								
	Year 1 863.82(ap)40 = 776.83					[2]			
	······································					-1			
v)									
,	Answer: a)								
	,								

Based on the expected provisions calculated in (a) above, the cash flow for years 2 and will be zeroised whilst year 1 will become: 2226 -776.83 = 1,449.17

Hence the table blow can now be completed for the revised profit margin revised end of year cash flow: 1,449.17 0 0 583 probability in force 1 0.899291 0.853504 0.809934 discount factor 0.925925 0.85733 0.793832 0.735029 expected p.v. of profit : 1688.90

[2] [16 Marks]
