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Abstract: 
 

Purpose of this paper is to explain how the concept of convolution of continuous 
distributions could be applied to insurance problems. Building a problem in a very general 
way, the paper dealt with a complex scenario: where the continuous distributions to be 
summed are not identical, and no closed form of convoluted distribution exists in literature. 
Some solutions to the problem are mentioned, and Fenton-Wilkinson method in particular 
is explained in great detail. 
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1. Introduction: 

One of the most important concepts in Mathematical Statistics is that of a convolution. 
To put in a simple manner: if a new random variable U = X + Y, where X and Y are 
random variables with PDFs f X (x) and g Y (y) respectively, then PDF of the sum (ie. 
Variable U) is called the convolution of X and Y. As we are interested in continuous 
random variables, mathematically speaking, a convolution is defined as: 

 

The convolution integral is continuously evaluated at each shift u by multiplication and 
integration of f (x) times g (u-x) for all values of u running from -infinity to + infinity. 
Note: f(u) and g(u) are the same as f(x) and g(x); the variable symbol makes no 
difference.  g(-x) is g(x) that is flipped or reversed in variable and g(u-x) is the function 
g(-x) shifted along the X axis by an amount u. Another point to note is: it doesn't matter 
which function one takes first, i.e. the convolution operation is commutative. The 
following pictorial illustration [Fig.1] might be helpful to understand how convolution 
actually works.  

 

Figure 1: Convolution of two Uniform distributions (left) and two Normal distributions 
(right) 



In each plot, the green curve shows the convolution of the blue and red curves as a 
function of u, the position indicated by the vertical green line. The gray region indicates 
the product f (x) g (u-x) as a function of u, so its area as a function of u is precisely the 
convolution.  

2. How to convolute? 
 

Some simple convolution results are readily available for use. A few are listed below (for 
continuous distributions): 
 

(1) If two independent Normal random variables X1 ~ N( 1 , 1
2 ) and X2 ~ N( 2 , 

2
2 ) then  X1 + X2 ~ N( 1 + 2 , 1 

2 + 2 
2 ). 

(2) If two independent Uniform random variables X1 ~ U [0,1] and X2 ~ U [0,1] then 
their X1 + X2 has the so-called triangular distribution on [0,2]. 

(3) If two independent Gamma variables X1 ~  ( , 1 ) and X2  ~  ( , 2 ) then 
X1 + X2 ~  ( , 1 +2 ) 

 
But for more complex cases, one can find three alternative methods available in statistics 
literature: (1) Analytic method [based on transformation like Fast Fourier Transformation 
(FFT) or Laplace Transformation], (2) Numeric method [based on Monte Carlo 
Simulation] and (3) Method of Moments [will be described in detail, as we proceed]. We 
are not in the position to comment on the relative robustness of these alternatives, but we 
can certainly point out some aspects from the point of applicability. It is not easy to use 
transformations always and one will land up with some very complex form, which may 
be beyond interpretation. MATLAB software is the most efficient in doing FFT. Concept 
wise Simulation is simpler and can be done in many mediums, but one cannot get any 
parametric form as the end result. Method of moments is simple to understand and can be 
worked out even in MS Excel/Access. 
 

3. Application of convolution in insurance problems:  
 

When pricing insurance contracts, the initial approach is to estimate the mean and 
variance of insured (aggregate) loss from that contract. Consider the popular Individual 
Risk Model. In this framework we assume that the portfolio (/policy) consists of n 
insurance policies (/exposures) and Xk denotes the claim made in respect of the policy 
(/exposure) k. Then aggregate amount of claim (from that portfolio/ policy) is S = X1 + 
X2 + ……+ Xn, where Xk is the loss on insured unit k and n is the number of risk units 
insured (known and fixed at the beginning of the period). The Xk's are usually postulated 
to be independent random variables (but not necessarily identically distributed). The next 
steps are to specify distributions for frequency and severity and eventually compute E (S) 
and V (S). Then use the deviation from the mean or average value to measure the risk 
taken and to calculate the loading or extra part of the premium. This suggests that we 
could use the variance as a measure of risk. 

 



However, the standard deviation (or, variance) has few disadvantages:  
 
 It treats the negative and the positive deviations from the mean in the same way. 

(As for an insurance company, it is only concerned with positive deviations from 
mean as in these cases actual claim amount that it has to pay is more than the 
expectation and might not be covered by the premium earned.) Markowitz, who 
developed CAPM, realized this and he said that other measures can be used, e.g. 
the semi-variance.  

 In insurance the use of the standard deviation is doubtful when we have to deal 
with probability distributions with fat tails. In such cases the standard deviation 
might not even exist. 

 
Some brought forward the concept of “Coherent Measures of Risk” to provide a better 
measurement of risk. The main point is that computation of these measures (eg.:  Value at 
Risk, Expected Tail Loss) depend on the underlying parameters and distributional 
assumptions about S. So for greater understanding of the risk coming from a collection of 
exposures, distribution (either parametric or non-parametric) of the aggregate claim size 
is very much required. Derivation of the same requires convoluting distributions.  
 

4.  An Example of how to convolute in complex scenarios: 
 
What follows next is an example showing how to do convolution, when no already 
established convolution result exists. Lognormal distribution is picked for that purpose, 
as it is one of the most useful loss distributions in practice. In property insurance, it is 
quite expected that loss distribution will not remain the same over the entire range of sum 
insured. Similarly, in the health insurance loss distribution may vary over different age 
groups, sex and many other factors. Even if the functional form remains same, parameters 
may change. So, this adds more to the first problem (not having any closed form of 
convoluted distribution). Data is not i.i.d – losses though independent, are not coming 
from identical distributions. The example is built in a general set-up. Applying CART or 
CHAID algorithm on the past loss record, one can find out the groups or classes (of sum 
insured/age/sex or some other relevant factor) such that within each class loss is 
homogeneous but between the groups it is heterogeneous.  
 
Let us consider N exposures in a policy. Assume, we already know K mutually exclusive 
and collectively exhaustive bands and found out individual claim sizes in each band 
follows lognormal distribution with different parameters (from study on past losses). 
Assume, we know the binomial and multinomial distributions of number of loss for these 
K bands. To start with, one can group N exposures in K bands. Nk denotes the number of 

exposures in k-th band. So, N = N1 + N2  + …. + NK . Let nk  denotes the number of losses 
from k-th band. Before we proceed further, let us make some restrictive assumptions, to 
avoid complexity: 
 
 An exposure will suffer from a loss maximum once in an underwriting year. 
 Once hit by a loss, the exposure will not be a part of the ‘active’ exposure set for 

the rest of the underwriting year.  



According to the above assumptions, n, the number of losses from the policy can take any 
value from 0 to N. nk can take any value from 0 to Nk. Note, n = n1 + … + nK. So, four 
losses (say, n = 4) can occur in many ways – different combinations of n1, n2, …, nK’s. In 
each case, the variables or distributions to be summed will change. To take care of all 
possible sums, one has to list down all possible combinations of n1, n2, …, nK’s, keeping 
the assumptions in mind. To know in how many ways four losses (for example) can 
occur, one has to look at the coefficient of x4 in the expression below:  
 
                                                   K 

 (1 + x + x2 + …. + xN
k) 

                                                  k=1 
                                                                                                                             N 
Let n denotes the coefficient of xn. Then the total number of possibilities  =  n.  
                                                                                                                            n=0 
There is another case: ‘0’ aggregate loss, when no exposure is hit by loss. For greater 
understanding of the above logic, please refer the table below: 
 
Table 1: The below table shows a glimpse of different possibilities of loss occurring 
 

 
 
 
For n=1 case, it easy to logically find out the possible number of cases (1) = K. Each 
case or possibility (i.e. each row in the above table) can occur with certain probability. 
So, the next task is to calculate those probabilities. Assume the number of losses from the 
policy, n ~ Bin (N, p) and we know ‘p’. Then, one can easily compute binomial P(n = 
n0)’s. There are several combinations in which n0 losses can occur and these probabilities 
can be computed using Multinomial distribution. So, the final probability formula for n0 
possible combinations is: 
                                                                                                                        K 
Binomial P(n = n0)  Multinomial P(n1 = n1,0 , n2 = n2,0 , ……, nK = nK,0   |   nk,0  = n0)  
                                                                                                                       k=1 
 



In the most complex scenario (refer the last row of Table1), to get the convoluted 
distribution of aggregate claim, one has to add X1 for N1 times, X2 for N2 times and so on. 
Assume, Xi ~ LogN (i, 2

i) with pdfs, pX i (x),  i = 1,K and all are independent. Closed-
form expressions for the pdf or cdf of the lognormal sum (X) are not available. 
However, the lognormal sum can be well approximated by different methods like Fenton-
Wilkinson (F-W) method or Schwartz-Yeh method. The first one uses the method of 
moments (the 3rd method of convolution, mentioned before) with some modification. It 
also made a crucial assumption: Sum of lognormal is lognormal, though it cannot be 
proved mathematically. Fenton and Wilkinson suggested a transformation of the original 
lognormal data produces good result in approximating the convoluted lognormal 
distribution. First, develop a new normal variable Y as 2.306log10X. Find the parameters 
of normal distribution -- Y and 2

Y. Note, they are suggesting a transformation in place 
of taking natural logarithm to convert lognormal data to normal. Then take exponential of 
that new variable Y to produce ‘transformed’ lognormal variable. The ‘original’ and 
‘transformed’ lognormal data will not vary much (We have checked this on some 
simulated lognormal data). Now, calculate the mean and variance of the ‘transformed’ 
lognormal from Y and 2

Y. From now on, we will call our ‘transformed’ lognormal as X. 
F-W method computes lognormal parameters - S and 2

S by exactly matching the first 
and second central moments (mean and variance, respectively) of S, aggregate claim size 
and  X. Mathematically speaking, to sum K distributions one has to solve the following 
equations to solve parameters - S and 2

S: 

 
 
 
Mean (/variance) of X can be written as sum of mean (/variance) because Xi’s are 
independent. For  number of convolution possibilities, parameters - S and 2

S need to 
be solved using eqs (1a-b). The ‘final’ convoluted distribution is the weighted 
combination of these +1-convoluted distributions (remember ‘0’ aggregate loss) of S = 
 X, weights being the binomialmultinomial probabilities (for each of  possibilities) 
derived before. For S=0, in place of convoluted lognormal cdf we used a probability mass 
P(S=0) =1 multiplied by weight: binomial probability P(n = 0). 
 
We applied the theory explained above on an imaginary data set. We also cross-validated 
the F-W result. For that, we used the numeric method of convolution – Monte Carlo 
Simulation. We calculated cumulative probabilities of +1 possible cases and 
accordingly assigned ranges in [0,1] to all +1 cases. We drew random numbers from 
U[0,1] several times to choose cases from +1 possibilities. For  cases (where n 1), 
random number is drawn from ‘original’ lognormal distributions and then their sum is 



taken. In the (+1)st case (‘0’ aggregate loss) we took zero values. In this way we 
generated several values of S. Hence one can derive the histogram of S and empirical cdf 
from that. As you increase the number of simulation, one can get smoother empirical cdf. 
If the parametric lognormal cdf, provided by F-W method, is close enough to the 
empirical cdf of S, then one can say that F-W approximation is doing good. We have 
done the same and below graph suggests that F-W approximation is indeed very good. 
 

 
 
Figure 2: Comparison of two methods of lognormal convolution – F-W and Simulation 
 
 
5. Conclusion: 
 
Convolution is necessary for better understanding of the aggregate loss distribution. 
Though any closed form of convolution does not exist for lognormal -- one of the most 
popular loss distributions in insurance, Fenton-Wilkinson approximation is there for 
lognormal sum. But F-W method has certain limitations as well. The approximation 
breaks down if variance of the distribution in use is higher than certain limit. Researchers 
have also noticed that F-W method fails to give good result for both the tails. Generally, 
it does not give good result for the lower tail. But still, its simplicity makes it a popular 
method of lognormal convolution in the field of engineering. 
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