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Abstract 
 
Elementary statistical methods are touched upon to describe data emanating from insurers. Without 
going deeply into a specific model, the paper describes the methodology to choose and fit a model. 
The merits of different methods are also explained. 
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1. Introduction: 
  
The principal problems with regard to pricing which confront an actuary especially in Non-Life sector 
are three fold. First, the actuary has to evaluate the risk, secondly, he has to adjust the evaluated 
risk to conform to contractual terms and thirdly he has then to arrive at the premium at which the 
product can be allowed to be in the market. The evaluation of the risk which is the basis of the 
whole exercise has to be done addressing two other aspects: the evaluation process should pay 
enough regard to the known claim experience and also amenable to further easier analysis and 
adjustments dictated by developing changes in the risk profile.  In this paper an attempt is made to 
introduce the available methods and then discuss briefly the merit or otherwise of these methods in 
the context of a few specific insurances. Some illustrations are also made using hypothetical data. 
Since the data used are hypothetical needless to add that it cannot become directly applicable to 
any type of specific insurance problem. At best it suggests a way to address the problem for which 
the practitioner has to use relevant and reliable data drawn from actual experience.  
 
2. Evaluation:  
 
We are interested in knowing: How frequently the event associated with a given risk will happen 
during an insured period?  Again, given the event has happened what would be the size of the loss 
associated with it?  For example, suppose we are examining the risk associated with automobile 
accidents leading to third party liability. First, we are interested in knowing how many accidents can 
be expected in the insured period. Again once there is an accident what would be the likely size of 
the third party liability? Thus the risk evaluation process has to determine the distribution of the 
probability associated with the number of accidents and then the probability of a loss not exceeding 
a given size will also have to be settled. The number of accidents is per exposure is generally 
referred to as the frequency of the risk and the size of the loss arising from any accident is called 
the severity of the risk. Clearly the value of the risk depends both on its frequency and its mean 
severity. 
 
How do we measure the frequency? Practice differs from risk to risk and company to company. In 
an automobile accident risk the frequency can be the ratio of the number of accidents in a year to 
the number of insured cars exposed to the risk. Here the accidents counted will include more than 
one accident resulting from a single car during the insured period.  In passenger Airline accidents, 
the frequency may be number of accidents per passenger mileage where the exposure unit is the 
number of passenger mileage. Thus the manner in which is frequency is determined and evaluated 
can be different.  The pure premium for the risk is thus the product of the frequency and the mean 
severity. For example, 
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Frequency = (Number of automobile accidents)/(Total number of  cars insured) 
Mean Severity = (Total amount of loss incurred from accidents)/(Total number of accidents) Clearly, 
Pure premium = Frequency x Mean Severity  
 
Whatever is our concern, evaluation of the frequency or size of the loss, the starting point is the 
data available to the actuary. Suppose the data for a given year for the automobile insurer are as 
follows: 
  Total Number of Cars insured  = 12489 
  Total Number of accidents that occurred = 78 
 
Let the loss incurred  during a year from each accident be as given in the table below: 
 
Size of the Loss Number of accidents Total Loss 
Less than Rs.500 28 11480 
Rs500 or less than Rs.2500 18 14850 
Rs.2500 or less than Rs.7500 10 32500 
Rs.7500 or less than Rs.10000 8 64800 
Rs.10000 or less that Rs.15000 8 101600 
Rs.15000 or less than Rs.20000 5 86250 
Rs.20000 or Rs.25000 1 24300 
Total 78 335780 
 
 
The above data tells us about the number of accidents, but there may be some cars that might 
have produced more than one claim. Similarly there may be claims which may be less than 100 for 
which the policyholder may not be induced to make a claim. Thus, the data is incomplete in the 
sense that all losses have not been reported. Again the claims need not be accurate and the 
settlements might have rounded off the claims to extent. So, the amount of loss is not completely 
reflected. So we have only data which is per se impure by not fully accounting all accidents and 
only gives the claims made which need not be the actual loss. 
 
From the above data, the frequency  =  78/12489 =0.006245 
  Mean  Severity            = 335780/78 =4304.87 
  Pure Premium   = frequency x severity  = 26.88 per car  
       
The pure premium we arrived at is simply the result of what data got reported and what amounts 
got settled as claims and so the true nature of the accident rate and the severity of loss are quite 
different. Clearly, we have to do some further operations on the available data before we can 
conclude that the pure premium resulting from such modified data can be reasonably taken as 
reflecting the future prospects. Since the basis of any rate making operations is the data, it is 
essential that the purity and completeness of the data are ensured. Where we know that some part 
of the data can be seen as spurious or where some gaps in information exists, some way must be 
found to purify or clean the data and fill in the missing data before the whole set can become 
serviceable for our purpose. 
 
3. Limitations:  
 
The insurance cover granted is regulated by several kinds of limitations. There is a natural limit 
dictated by law that ensures that the insured’s claim is limited by the principle of indemnity. 
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Insurance cannot be a means to make gains by those who seek cover. However in every contract 
there is an upper limit up to which compensation is paid and beyond that the insured has to absorb 
the loss himself. Since processing of claims involves expenses which is more or less constant with 
respect to the about of the claim, it is in the interests of the insurer to put a minimum limit below 
which no claims are admitted by contract. These lower limits are referred to as deductibles. There is 
what is called franchise deductibles under which the insured has to bear the loss himself if the loss 
is below this limit. If however the loss exceeds the limit the entire loss becomes the responsibility of 
the insurer.  Under vanishing deductibles if loss exceeds the limit only a percentage of the 
deductible is met by the insurer and this percentage decreases with increase in size of the loss and 
beyond a certain amount the deductible is totally ignored. 
 
The effect of the limits is to somewhat distort the amount claimed. When the loss is near about the 
deductible, there is a tendency to slightly overstate the loss so that the claim exceeds the franchise 
limit. Similarly the maximum also distorts the information on loss distribution. When the loss 
exceeds the maximum, there is a tendency not to be so concerned about the determination of the 
actual size of the loss.  
 
Sometimes limitation operates with the introduction of a waiting period for benefit to commence as 
in sickness insurance. There can be tendency to prolonging the illness beyond the waiting period so 
that a claim can be preferred. 
 
So limitations play an important role in the quality of data accumulating in an office. While studying 
data for its accuracy, it is also necessary to understand the effect of any limitations so that the data 
are reorganized to eliminate or at best minimize such distortions. 
 
All limitations in substance eliminate a certain proportion of the overall loss. An idea about this Loss 
Elimination Ratio (LER) is useful for a person studying the behaviour of a Loss. LER is simply the 
ratio of the total mount of losses eliminated to the total losses actually incurred. Limitations 
eliminate the severity of losses and so LER is also equivalently the ratio of severity of losses 
eliminated to total severity. 
 
4. Data and Models – numerical/graphical methods: 
 
Apart from the distortions introduced by the operation of limitations, data can become distorted due 
to clustering. Loss adjusters tend to settle losses at or below their authorized limit and there is also 
a tendency to prefer round figures. The raw data before an actuary have somehow to be modified 
so that these kinds of distortions are removed. One way is to identify the cluster points and then 
make groupings of the data in such a way that these cluster points lie in the middle of a group. 
 
Models describe the pattern in which the losses from a risk materialize. A loss is looked upon as a 
random variable and the occurrence of loss values is assumed to follow a probability distribution. 
We can classify models as either empirical or mathematical. Under empirical models we attempt to 
construct models whose probability distribution cannot be described by any mathematical format. 
The value of the random variable and its occurrence probability are described in a tabular form 
estimated from the available data. On the contrary there are several mathematical models 
associated with random variables which neatly conform to actual experience. In insurance practice 
both empirical and mathematical are important.  
 
A risk if it can be modeled satisfactorily according to some known mathematical probability 
distribution, it can be handled with greater ease, for it is amenable to further mathematical 
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treatment and statistical principles.  The elements of subjectivism in the decision making can be 
kept down to a minimum. But though many insurance losses are known to conform to known 
statistical models, their alignment is only at best close and not exact. Hence, even with carefully 
chosen mathematical models the elements of subjective judgment remains to an extent.  The great 
advantage of a mathematical model is that once a good fit is achieved, the data can be practically 
disregarded and further problems associated with evaluation of risk is a matter of statistical 
mathematics. As and when new data get accumulated, the model in use can be further tested 
against the fresh data to see any further adjustment has become necessary. Such adjustments can 
be done by fine tuning the parameters of the model being used. 
 
The empirical model certainly firmly rooted on the data in hand. When newer data get accumulated 
and the data volume increases it can be argued that the empirical model tends to become more and 
more reliable. But if the risk profile is also gradually changing and these changes are best reflected 
only in the more recent data, what is the relevance to include old data, in any case data belonging 
to the distant past? Should we discard old data in preference to newer data or should we continue 
to use both in the valuation of the risk?  On the contrary if an acceptable mathematical model is 
already in place will it not be more simple and advantageous to continue using the model and give 
effect to the impact of newer data by adjusting the parameters of the distribution? 
 
The answer to these questions is not simple. The element of subjectivism will always be present 
and there is always a role for informed judgment. Visualizing the future from what has happened in 
the past will always contain an error term. So, the success of the evaluation process lies not only in 
choosing the right model, empirical or mathematical, but also in the understanding of the error term 
inevitably involved in such exercises. We should allow for this error term in our evaluation to a 
sufficient degree. 
 
We shall now attempt to process the data given in the above table to fit an empirical distribution. 
As a first step we shall examine the plots of relative frequencies. The representative value for each 
class can be either the mid value of the class or the mean value for the class if more information is 
available. Since the aggregate loss details for each class are available we can use class mean also. 
Plots over mid-x and mean-x have been constructed using the available data.        
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Relative Frequency against  Class Mean Values

0
0.05
0.1

0.15
0.2

0.25
0.3

0.35
0.4

0 5000 10000 15000 20000 25000 30000

Class Mean

Re
la

tiv
e 

Fr
eq

ue
nc

y

 
 
 The plot against class means appear better than the plot against the mid values of the class 
intervals. But the relative frequency in both needs some adjustments to conform it to a probability 
distribution. To do this we shall construct the ogive and look through that graph. 
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Smoothed Ogive
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In the unsmoothed Ogive the curve takes concave form between x=6000 and x=12000 which 
means that the curve is not an increasing function and so it needs adjustment and in the smoothed 
form this anomaly has been rectified by inspection and regrouping of the classes. Using the 
smoothed ogive H(x) we can estimate the cumulative distribution function values at various points 
of x by reading out such values from the smoothed ogive.  It is also possible to establish an 
approximate mathematical form to F(x) by applying finite Lagrange’s Formula. From the observed 
data as arrived at above we choose four values to fit a polynomial for the Cumulative Distributive 
Function F(x). The four values chosen are highlighted in the table below below: 
 

Group Upper 
Extreme (x) (y) 

Cumulative 
Frequency 
F(x) or F(y) 

500 0.5 0.35897436
2500 2.5 0.58974359 
7500 7.5 0.71794872
10000 10 0.82051282 
15000 15 0.92307692
20000 20 0.98717949 
25000 25 0.99999999

   
In order to make the numerical work simpler the variable X has been scaled down by a factor of 
1000 and these scaled down variable Y has also been shown in the above table. The form of F(x) 
can now be determined using Lagrange’s formula which has its origin in the theory of divided 
differences.  
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Now, we have  
 
                         F(x) 
    -------------------------------------------------------  = 
         (y – 0.5) * (y – 7.5) * (y – 15) * (y -25) 
 
         F(0.5) 
              ---------------------------------------------  * (1/(y-0.5)  + 
                    (0.5 – 7.5) * (0.5 – 15) * (0.5 -25) 
 
         F(7.5) 
                ---------------------------------------------  * (1/(y-7.5)   + 
                    (7.5 – 0.5) * (7.5 – 15) * (7.5 -25) 
 
                   F(15) 
                ---------------------------------------------  * (1/(y-0.5)    + 
                    (15 – 0.5) * (15 – 7.5) * (15 -25) 
 
                 F(25) 
                ---------------------------------------------  * (1/(y-25)             
          (25 – 0.5) * (25 – 7.5) * (25 -15) 
 
 By simplifying the above equation we arrive at the relationship 
 
  F(y) = 0.0000215 * y3 - 0.0021453 * y2 + 0.0667576 * y + 0.3259339 
 
We can now use the above relation to determine values of F(x) for any value of  X remembering  
that x=1000 * y. The calculated values are tabulated below: 
 
                          Empirical Values of F(x) 
(x) F(x) (x) F(x) (x) F(x) (x) F(x) 
500 0.358779 8000 0.733710 15500 0.925385 23000 0.988266
1000 0.390568 8500 0.751587 16000 0.932982 23500 0.989213
1500 0.421316 9000 0.768666 16500 0.940022 24000 0.989845
2000 0.451040 9500 0.784963 17000 0.946522 24500 0.99018 
2500 0.479756 10000 0.800493 17500 0.952498 25000 0.990232
3000 0.507480 10500 0.815274 18000 0.957966 25500 0.990019
3500 0.534228 11000 0.829321 18500 0.962943 26000 0.989555
4000 0.560016 11500 0.842650 19000 0.967444 26500 0.988859
4500 0.584861 12000 0.855278 19500 0.971485 27000 0.987945
5000 0.608778 12500 0.867220 20000 0.975083 27500 0.986829
5500 0.631784 13000 0.878493 20500 0.978254 28000 0.985529
6000 0.653895 13500 0.889113 21000 0.981014 28500 0.98406 
6500 0.675127 14000 0.899096 21500 0.983379 29000 0.982437
7000 0.695496 14500 0.908459 22000 0.985365 29500 0.980678
7500 0.715018 15000 0.917216 22500 0.986989 30000 0.978799
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It will also be interesting to view the graph of F(x) using the empirically determined values. The 
graph is shown below: 
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After arriving at the distribution as aforesaid, it is necessary to check the distribution to ascertain 
whether the basic laws of probability are violated by the distribution. The two principles to be 
checked are that the d.f  is an increasing function and that at the maximum value the variable can 
take the d.f. must not exceed 1. If any anomaly is noticed, the entire exercise will have to be 
redone with a different grouping of the data which the experimenter believes would remove the 
anomaly. To trace how closely the resulting distribution follows the data it is possible to apply a Chi-
Square test of goodness of fit between the actual data and the resulting corresponding figures from 
the numerical exercise done. The success of the above suggested method is not always assured. If 
the data are too complicated a good fit may not result.  
 
5. Data and Models – Simulation 
 
The numerical method suggested in the previous section may not be convenient in many situations. 
The work load involved may be too heavy or the resulting distribution may not conform to the laws 
of probability distribution however much you try to adjust the resulting distribution.  In such 
situations a simulation method is a possible way out.   
   
Here we attempt to fit a known distribution to the random variable. From prior knowledge the 
broad shape of the distribution might be known and that may be the reason for the choice of 
simulation. A simulation can be attempted using a uniform distribution. The rationale for the 
simulation is as follows. 
 
Let Y have a uniform distribution, where the support is  0<= y  <1.  Let X be the variable which we 
want to simulate. Let Y= F(X). X the random variable is thus defined as the inverse function of Y.  
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That is  
X= F-1(Y).  So the distribution function of X will be: 
 
  Pr [X<=x]  = Pr[Y<= F(x)]  = Pr[ F(X) <= F(x)] 
 
  Since Y= F(X) we have 
 
                                                F(x) 

  Pr[X=x] =  0∫  (1)dy  = F(x). 
 
Thus X values can be derived from any randomly chosen value of y from the uniform distribution 
using the inverse relationship of X with Y as defined above. We can thus generate any number of 
random values for X from random numbers taken from the uniform distribution. We shall illustrate 
this with an example. Suppose that we want to develop a Pareto distribution for X from a uniform 
distribution. 
 
We know that the d f of a Pareto distribution is given by 
 
  F(x)  = 1 -  λα ( λ + x)-α          0<=  x   < ∞ 
   
  We set   Y =  1 -  λα ( λ + x)-α 

  so that 
    X = λ [  1/(1-Y)1/α – 1 ] 
 
Now using a computer we pick out a random variable and then determine the corresponding value 
of X from the above relationship. But we must have knowledge of the two parameters λ and α . 
These we derive from the available data as the first approximation. Let the available data be as 
follows: 
 
   

Class 
Interval Mid-x   (x) Frequency (f) f*x f*x^2 
0-500 250 28 7000 1750000 
500-2500 1500 18 27000 40500000 
2500-7500 5000 10 50000 250000000 
7500-
10000 8750 8 70000 612500000 
10000-
5000 12500 8 100000 1250000000 
15000 -
0000 17500 5 87500 1531250000 
20000-
5000 22500 1 22500 506250000 
Total  78 364000 4192250000 
Mean E(X) 4666.67    
E(X^2) 53746794.87    
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For Pareto distribution we set  α  = 2.  ( m2 –m1^2 )/ (m2 -2m1^2) 

 where m1= 4666.67 

 and m2= 53746794.84                      and    λ  =  m1*m2 /(m2 – 2m1^2) 

 

 Hence      α =   6.2738233     

      λ =   24611.175   

Using these initial values of the two parameters we simulate from a computer program a set of 
values, say 500. Now we make a frequency distribution out of these 500 values and calculate again 
the new parameter values. We repeat the simulation using these new parameter values to produce 
another set of 500 random numbers. The process is again and again repeated to refine the 
parameter values further. In this way we arrive at a set of F(x) for the Pareto distribution by 
applying the final refined parameter values. 
 
In the above example, we were able to derive d f of X in a closed form and we derived several sets 
of random values for X only to refine the parameter values. But it is not generally possible to arrive 
at the functional form of the d f of X that simply because of the complexity in solving for X from the 
relation     X= F-1(Y).  The values corresponding to the Random Y-values from uniform distribution 
are determined by some numerical methods. However, with a suitable computer program this 
laborious work can be lightened. 
 
Before concluding this part we shall indicate how greater complexity arises by assuming that X has 
a Gamma distribution in stead of a Pareto as earlier assumed.  With Gamma we set 
                                                                          x 

    Y =  (1/г(α))* 0 ∫  (β/гα)* exp(-βx)* (βx)α-1 dx 
 

Hence the random values derived from the uniform distribution will follow a Gamma distribution 
with 
    Mean   = α/β   and 
    Variance  = α/β2  
The starting parameter values are derived from the data available by equating the data mean and 
data variance to the above relations. 
 
But the calculation of X values from the obtained random values of Y can now be seen to be quite 
daunting, not to mention the evaluation of integral by numerical methods to get F(x) values. 
Considerable programming skill and computer time are required to do this. 
 
Random variables of the type Pareto were generated using a uniform distribution from a computer 
and these random Pareto values were grouped and then their cumulative frequencies were 
determined and tabulated. Every time 500 sets of random values were derived and from that the 
parameter values of the Pareto were recalculated. The trial was repeated for another set of 500 
random values using the new parameter values derived.  Two hundred five such trials were made 
and the mean parameter values resulting from these trials were then used to produce the F(x) 
values. These final F(x) values derived are tabulated below: 
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F(x) fitted by Empirical, Simulation Methods
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Cumulative Distribution Function Values for the Pareto with Alpha =20.33 and Delta 
=131024  
Compared with the fitted empirical model and actual data –(Graph shown above) 
Upper 
Bound of 
Class 

Cum 
Frequency 
according 
to 
Simulation 
(Pareto) 
Method 

Cum 
Frequency 
according 
to 
Empirical 
Data 
(Ogive) 

Cum 
Frequency 
according 
to actual 
data 

Upper 
Bound 
of Class 

Cum 
Frequency 
according 
to 
Simulation 
(Pareto) 
Method 

Cum 
Frequency 
according 
to 
Empirical 
Data 
(Ogive) 

Cum 
Frequency 
according 
to actual 
data 

500 0.074511 0.358779 0.358974 15500 0.897005 0.925385   
1000 0.143219 0.390568   16000 0.903896 0.932982   
1500 0.206595 0.421316   16500 0.910306 0.940022   
2000 0.265070 0.451040   17000 0.916268 0.946522   
2500 0.319040 0.479756 0.589744 17500 0.921816 0.952498   
3000 0.368867 0.507480   18000 0.926980 0.957966   
3500 0.414882 0.534228   18500 0.931787 0.962943   
4000 0.457390 0.560016   19000 0.936263 0.967444   
4500 0.496669 0.584861   19500 0.940431 0.971485   
5000 0.532976 0.608778   20000 0.944315 0.975083 0.987179 
5500 0.566545 0.631784   20500 0.947934 0.978254   
6000 0.597592 0.653895   21000 0.951307 0.981014   
6500 0.626313 0.675127   21500 0.954451 0.983379   
7000 0.652891 0.695496   22000 0.957383 0.985365   
7500 0.677493 0.715018 0.717949 22500 0.960118 0.986989   
8000 0.700272 0.733710   23000 0.962669 0.988266   
8500 0.721368 0.751587   23500 0.965049 0.989213   
9000 0.740913 0.768666   24000 0.967271 0.989845   
9500 0.759023 0.784963   24500 0.969345 0.990180   
10000 0.775810 0.800493 0.820513 25000 0.971282 0.990232 1.000000 
10500 0.791375 0.815274   25500 0.973090 0.990019   
11000 0.805809 0.829321   26000 0.974780 0.989555   
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11500 0.819199 0.842650   26500 1.000000 0.988859   
12000 0.831624 0.855278   27000 1.000000 0.987945   
12500 0.843156 0.867220   27500 1.000000 0.986829   
13000 0.853862 0.878493   28000 1.000000 0.985529   
13500 0.863804 0.889113   28500 1.000000 0.984060   
14000 0.873039 0.899096   29000 1.000000 0.982437   
14500 0.881619 0.908459   29500 1.000000 0.980678   
15000 0.889593 0.917216 0.923077 30000 1.000000 0.978799   

 
6. Applying chosen probability models to a given set of data: 
 
We have considered two approaches to finding the distribution function of  random variable, the 
empirical and the simulation methods. In the empirical method  an ogive was determined in a 
mathematical form using the available data. In other words a polynomial was fitted to F(x) from the 
observed values. Once the polynomial is thus determined we could  generate F(x) values from any 
number ox x-values. Here we could say that we arrived at our distribution function without 
assuming much about the shape of the model. The data was allowed to determined the functional 
structure of F(x). Under the simulation technique we assumed that the data can be expected to 
follow a known distribution. In our example we assumed it to be a Pareto. Then using the technique 
of generating  

 
random numbers from a uniform distribution we could derive several random numbers applicable to 
the given data. These random values (which will conform to the assumed Pareto) were used to 
produce a fresh set of data from which the parameters of the Pareto were re-estimated. Again the 
process was repeated several times using every time the fresh set of parameters just previously 
determine. We thus get a set of parameter values for the Pareto we assumed for the data. Using 
the mean value of this set of parameter values, we generated the simulated F(x) values. Here again 
the method was empirical but there was some assumption about the likely type of distribution. 

 
In this section we shall consider an approach which totally assumes that the given data originated 
from a known statistical distribution. As we know any statistical distribution will have a few 
parameters that determine the shape and structure of the distribution function. Since we have 
assumed here the statistical distribution, the only problem that remains is to determine its 
appropriate parameter values. The available data are then used to estimate these parameter 
values. The technique clearly assumes much more than the two methods described above. Even 
though in the simulation method we assumed a distribution, the parameter values were determined 
by a simulated random process. When we later discuss the relative merits of these methods the 
difference of approach will become clearer. Under the model based approach there is not only the 
assumption that the distribution is pre known but the parameter values of that distribution can be 
derived from the data itself by some method. The assumptions as to the distribution are much more 
than in under simulation technique. In other words we strongly believe that the distribution function 
applicable to the given data and its population follows the assumed model and therefore the model 
is sacrosanct.  
 
The estimation of parameter values can be done by different statistical approaches. One way is by 
the maximum likelihood and another is the comparison of the moments of the random variable.  
Where the assumed model provides a theoretical means to express the parameter values in terms 
of the moments of its distribution and if we have some sample data also available, then the sample 
moments can be used as a first estimate of the population moments and in this way the parameter 
values estimated. There may more adjustments needed dictated by any further knowledge available 
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about the risk and attempts should be made to carry them into our first estimate to produce a 
better estimate. 
 
As for maximum likelihood estimate of the parameter values,  we start by defining a Likelihood 
function involving the parameters to be estimated. Let f(x) be the theoretical p.d.f. associated with 
the assumed model. Then if we have n sample values of X, we make use of these n sample values 
to construct our likelihood functions as: 

 
             i= n  
   L(α,λ) =  Лi=1 [ f(xi) ] 
 

In the case of Pareto distribution (assumed model) since we have  f(x) = αλα (1 + x)-(λ+1) 
                                                                                                      i=n 

       Ln (α,λ)      =   n[Ln(α) +α Ln(λ)] – (λ + 1)  ∑i=1 Ln(1 + xi) 
 

By differentiating the above function with respect to the parameter λ (treated here as a variable 
and the other parameter as constant) we obtain a relationship involving the two parameters. 
Similarly by differentiating with respect to the other parameter α (treating it as a variable and 
treating λ as a constant) we get another relationship involving the two parameters. If we set the 
two derivatives to zero and assume that the second derivatives are negatives, then we may be able 
to determine numerical values for the two parameters. After determining the numerical values we 
may test the second derivatives to ascertain if they do in fact yield negative values with these 
numerical values. If not, the estimates we arrived at may not be suitable and some other methods 
have to be looked for.  

 
In certain models with a single parameter, if we have a strong belief that the parameter of the 
distribution itself can be treated as a random variable having a standard mathematical form then 
we may further assume that the likelihood function is the conditional joint probability distribution of 
the n random variables for a given parameter value. In such circumstances, the joint pdf of these n 
random variables and the parameter can be taken as the product of the likelihood function and the 
pdf of assumed for the parameter. The probability distribution of the parameter when the n random 
variables are known to assume the observed values will be determined by summing this joint pdf of 
the n random variables and the parameter over the range in which the parameter can exist.  
 
Where the number of parameters is more than one, the above Bayesian method will be successful 
only if some further assumption can be made about their inter-relationship. For instance if the 
parameters are λ and α , then if it can be assumed that  λ = kα, where k is a constant, the 
distribution can be converted into a single parameter distribution and the above method adopted. 
 
7. Comparison of model based distributions 

 
We had touched upon how we would go about fitting a distribution on the basis of an assumption 
of a mathematical model distribution. In all the three set of cumulative frequencies,  the distribution 
is pre-assumed and fitted by choosing an appropriate value for the parameters of the resulting 
distribution.  The simplest is finding the parameters by the method of moments. Then we touched 
upon the maximum likelihood estimates of the parameters and then also on how Bayesian 
estimation of parameter is possible. Which is the best? Of course it is that which lies nearer the true 
value. One way of comparison is to estimate the error of our estimate under each method. The 
variance even if it can be approximately estimated provides some clue. Which one will converge 
more rapidly to the true value can then be gauged from the variances.  
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It has been found that with large samples the method of maximum likelihood is superior to the 
method of moments. When it comes to Bayesian estimates, the error will be even lower provided 
we could somehow hit upon the prior distribution which describes the parameter in the right region. 

 
Whatever the model is chosen, it should be tested for goodness of fit with the observed data.  

 
8. Conclusions 

 
The process of statistical modelling begins with available data, or only collateral data or no data. 
The value of the risk being modelled need adjustments because the loss actually contracted to be 
met will almost certainly be different from the actual progression of the value of the risk. Usually 
the data available for modelling is data on loss and not on the actual incurred value of the risk. A 
successful model will be one that can capture the actual value of the risk so that when the 
contracted loss has to be varied the evaluation of the contracted risk would be appropriate. 

 
When we have sufficient data, the exercise would be more reliable. The type of model would be 
dictated by the available information on the pattern of the distribution function of the risk and its 
parameter values. When only collateral data are available, then the model will have to be more 
prudently cast so that the risk is not underestimated. The area of interest in the body of the risk is 
important. For example if  there is to be a maximum limit for the loss the distribution should be 
adjusted so that the probability of occurrence of the loss within the band of interest is not 
understated.  This would be the case with most exercise with rate making. On the contrary if the 
model is to serve for reserving, or fixing reinsurance limits, then a different distribution of the 
probability resulting may be necessary with a thicker tail. Here the relative emphasis being on the 
tail, we reconstruct the model so that a larger part of the probability lies in the tail compared to the 
originally assumed distribution. 

 
When no data is available the exercise becomes even more difficult. Pilots are required to acquire 
experience and the pilots have to be planned in such a way that loss as well as the size of the pilot 
is suitably limited so that while information on the true value of the risk is gathered, the office is not 
too much exposed. Based on such pilot, then the modelling process can commence in the ways 
indicated above.  

 
The evaluation resulting from a modelling exercise has to be further adjusted for expenses of office 
and security loading and data insufficiency factors. Security loading is an addition dictated by the 
model so that the probability of running into a situation when the accumulated premiums plus the 
loadings do produce an excessive aggregate loss, the probability of ruin, is an acceptable low for 
the office. 

 
The points expressed in this paper are merely indicative of the possible means available to actuaries 
and the illustrations shown above do not apply to any specific situation of an office. In short, it 
might be looked upon as a source of broad methods, but the success of any modelling exercise will 
depend upon the volume of data available, the right choice of the mathematical model and 
sufficient loadings for security etc. The emerging final office rates may further be dictated by 
competitive pressure. However a prudent actuary will take enough steps not to be swerved by such 
pressure and should work the final product with clear and easily recognizable limitations and terms 
so that the resulting modified rates still conform to his original findings.  
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