

13th Global Conference of Actuaries 2011 Emerging Risks... Daring Solutions

Rating Commercial Property: small vs LARGE Risks

Ronald T. Kozlowski

Director & Head of General Insurance Consulting, Asia Pacific

TOWERS WATSON **L**

Contents

- Introduction
- Data Collection
- Ratemaking
- Loss Costs small, Medium Risks
- Loss Costs LARGE Risks
- Final thoughts

Commercial Property: small vs LARGE Risks

Small/Mid	Large
Actuarial	Underwriters/Engineers
 Many class base rates (occupancy, type of construction, fire protection, territory, etc) 	 Fewer class base rates, adjusted for specific conditions relative to that account
Automated underwriting	Sophisticated underwriting
small – exposure ratedMedium – exposure rated	 Exposure rated, possibly experience but more for an aggregate portfolio
 small – no specific risk management Medium – broker supported risk management 	 Fair to sophisticated risk management
 Predefined catastrophe loads 	 Individual catastrophe modeling required

Data Collection – Exposure Data

- Collect data for each location
- Key data items
 - Exposures: buildings, contents, structures, outside equipment, business interruption, builders risk
- Key classification items
 - Occupancy (e.g., airport passenger terminals, dry cleaners, restaurants)
 - Construction
 - Construction may vary by peril
 - Protection (Fire)
 - Private Automatic sprinklers or not
 - Public Adequate fire department and adequate water supply
 - Territory
 - State, city, town, zip
 - Territories may vary by coverage (exposure), peril

Data Collection – Policy Data

Key data items

- Inception date and length of policy (if not 1 year)
- Form/coverages provided
- Insured values building, contents, business interruption
- Limit and if a layered policy attachment point
- Deductible
- Premium

Data Collection – Loss Data

- Paid and outstanding amounts for loss and loss expense
 - Ground-up loss if available
 - If not, need to add deductible to loss for analysis
 - Split by exposure building, contents, business interruption
- Date of loss
- Peril/cause of loss
 - Fire, lightning, explosion, vandalism
 - Windstorm, hail, smoke, aircraft/vehicles, riot, civil commotion, sinkhole collapse, volcanic eruption
 - Theft, water
 - Earthquake
 - Flood
- Policy number so the policy data can be attached to the loss data

Ratemaking

- Purpose is to determine a rate per exposure unit
 - Usually either per 100 or per 1000 units of exposure
 - Small commercial fire normally \$100 of insurance
- Rate begins with an actual "loss cost" or "burning cost"
 - = historical losses / historical exposure units
 - for matching time frame
 - How long will rates be in effect?
 - Loss trend
 - Exposure trend
 - Loss development, if accident year
 - Adjustments for changes in coverage and/or deductible

Ratemaking (cont'd.)

- Summarize data in homogeneous groups
 - By peril or forms
 - By occupancy (or group of occupancies)
 - By construction
 - By protection
 - By territory
 - Or any combination of the above

Options

- Base class w/ relativities
- More base classes with fewer relativities

Ratemaking (cont'd.)

- When data is not adequate for a segment
 - Credibility
 - Class groups should be large enough to measure costs with sufficient accuracy
 - Trade-off between the need to estimate costs accurately for an individual and the need for enough data to do it
 - Give some credibility to pertinent data segment (e.g., occupancy = hotels)
 - For the complement use larger, less homogeneous data, but still pertinent (e.g., non-industrial risks)
 - Need for off-balance factors
 - For differences due to construction, fire protection or territory, one can use entire data to calculate relativities to apply for all occupancies

Loss Cost Rating Procedure - Small Risks

Commercial Fire Loss Cost

- = Base class (form, occupancy)
- x building construction factor
- x protection class factor
- x territorial multiplier
- x co-insurance factor
- x limit of insurance relativity
- + additional surcharges

Multivariate Techniques

Univariate (One-Way) Analyses

 Based on assumption that effects of single rating variables are independent of all other rating variables

Multivariate Analyses

- Give consideration to the correlation or interaction between rating variables
- Bailey's Minimum Bias Method
- Least Squares Method
- Generalized Linear Model (GLM) Method

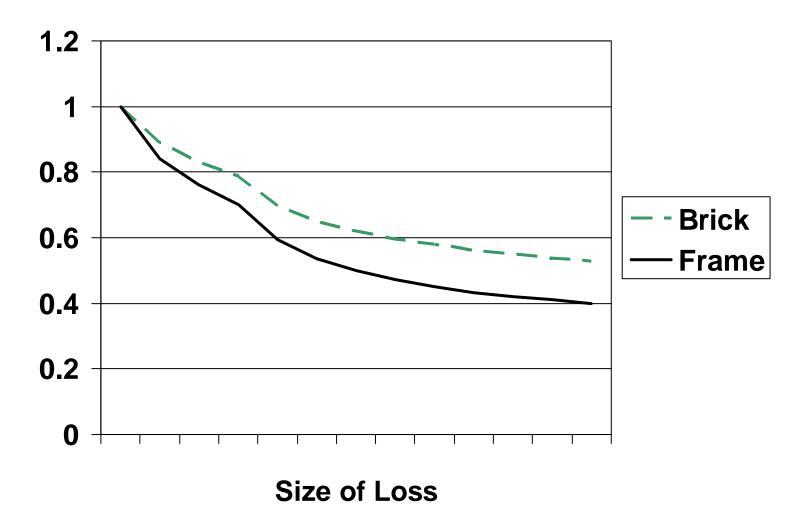
Loss Cost Rating Procedure – Another Alternative for Small Risks

Commercial Fire Loss Cost

- = Base class (form, occupancy)
- *x* building construction factor
- x protection class factor
- x territorial multiplier
- x co-insurance factor
- x limit of insurance relativity
- + additional surcharges

Commercial Fire Loss Cost

- = Base class (form, occupancy, territory, construction)
- x protection class factor
- x co-insurance factor
- x limit of insurance relativity
- + additional surcharges



Coinsurance factor

- If insured purchases insurance for at least 80% of the insured value then policy pays full value of the claim, up to the limit
- If under-insured then policy does not pay full value of the claim
- If policy limit at 90% or 95% of property value than premium credit is given

Limit of Insurance Relativities (illustrative)

Additional Surcharges - Examples

- Personal property off premises
- Personal effects and property of others
- Fine Arts Coverage
- Computer Equipment Coverage
- Outdoor signs
- Ordinance or law impacts
- Back-up of sewers and drains
- Off-premises utility failure
- Pollutant cleanup and removal
- Recharge of fire extinguisher systems

Catastrophe Peril Consideration

- Experience based
 - Spreads historical losses across geographic region
 - How many years? Over what area?
- Exposure based
 - Relies upon catastrophe models
- Rating variables could vary by peril (e.g., territory, construction)
- Deductibles
 - For significant perils might see deductibles of 5% to 15%, with option up to 40%
 - Deductible curves might vary significantly by construction type and territory
- Building code effectiveness

Data Collection – Exposure Data – Wish List

- Age of building
- Type of utilities/open flames
- Size/stories/basement
- Age/renovation of electrical wiring or plumbing
- Sewer information
- Change in surrounding elevation/pooling of water
- Access to property (single, limited, multiple)
- Terrain
- Concentration of properties
- Consider external databases

Large Risks – Loss Costs

- Base rates by a smaller number of categories
- Base rates are adjusted based upon "size" schedule credit
 - (ie: larger the account, lower the initial base rate)
- Apply debits or credits based upon the conditions that are unique to that particular risk
 - Risk Quality Adjustments
 - Scope of Coverage Adjustments
- For large risks, insurer may only cover a portion of the exposure
 - Exposure curves used to adjust for layer
- Add CAT loads (wind, flood, earth movement, etc)
- Add loads for other perils (equipment breakdown, terrorism, etc)

Large Risks – Examples of Rating Adjustments

Risk Quality Adjustments

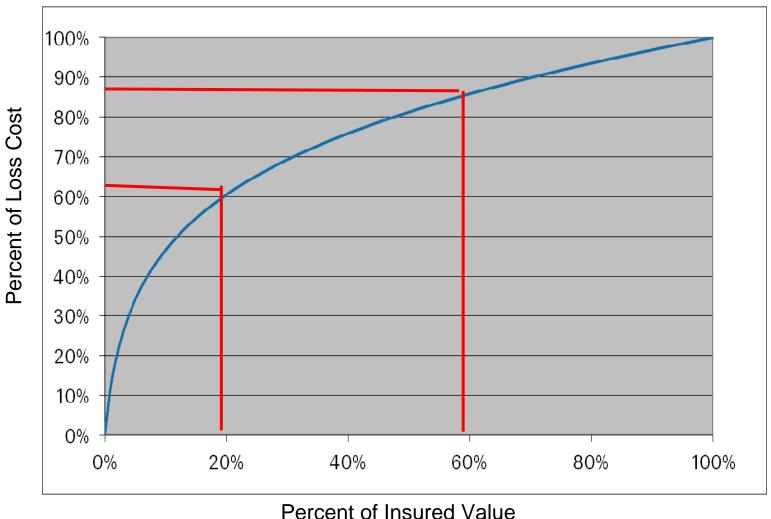
- Quality of Construction Materials
- Unique Special Hazards
- Private Protection (Sprinklers/Alarms)
- Public Protection (ISO Fire Grade/quality of public water)
- External Exposures
- Secondary Occupancies
- Business Interruption assessment

Scope of Coverage Adjustments

- Type of policy form (Company form or Manuscript)
- Is coverage Blanket or to Scheduled Limits
- Extent of policy enhancements
- Other unusual conditions

Large Risks – Exposure Curves

Exposure curve use


- Curves will vary by occupancy and size of risk
- In general, occupancies with less chance of large or total losses (e.g., office buildings) will have a curve that is more steep in the beginning
 - This will put more premium in lower layers of deductibles and less in higher layers
- Similarly, very large buildings will have a lower chance of total loss and should have a curve that is more steep

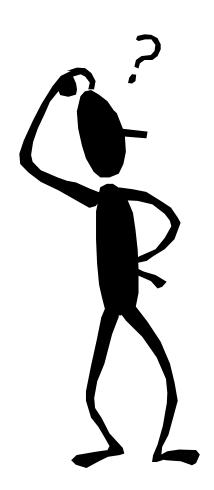
Sources

- Lloyds
- Reinsurer Curves (e.g., Swiss Re, Munich Re)
- ISO's PSOLD
- Combined company experience and industry curves

Large Risks – Exposure Curve Example

Large Risks – Exposure Curve Example (cont'd.)

- See sample curve previous slide
 - X axis is the percent of insured value
 - Y axis is percent of loss cost
 - Example
 - 100 million building
 - Layer is 40 million (60%) excess of 20 million (20%)
 - The premium for the layer is the percent of loss cost between the two
 - At 20% percent of premium = 60%
 - At 60% percent of premium = 87%
 - Loss cost for this layer = 87% 60% = 27% of ground-up loss cost



Some Parting Thoughts

- Low frequency LOB's are more challenging
- There is always a learning curve
- There is always more data you could collect or use
 - Think external data
- Start working on data now
- Underwriters have valuable insight you need to work in tandem
- Catastrophe analysis is more important than you think

Questions? Contact Details

Ronald T. Kozlowski

- Director & Head of General Insurance Consulting, Asia Pacific
- Suites 2106-8, Central Plaza,
 18 Harbour Road,
 Wanchai, Hong Kong
- Office +852-2593-4589 /
 Mobile +852-9660-1306
- o ron.kozlowski@towerswatson.com

