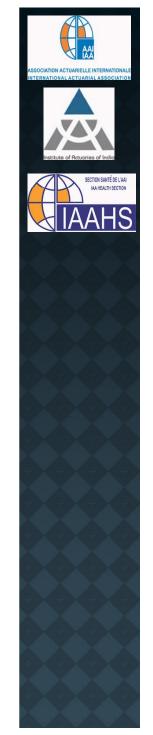




13<sup>th</sup> Global Conference of Actuaries 2011

Emerging Risks... Daring Solutions

### **Stochastic Modeling**


Richard Kipp Principal & Consulting Actuary Milliman Biresh Giri Consulting Actuary Milliman India



### **Overview**

- General issues of stochastic modeling
- Short term medical insurance risk model
- Example
- Q&A

This presentation and Q&A is not intended to be an actuarial opinion or advice, nor is it intended to be legal advice. Any statements made during the presentation and subsequent Q&A shall not be a representation of Milliman or its views or opinions.



13<sup>th</sup> Global Conference of Actuaries 2011

## **IAA** publication

- Based on the recently published book by the IAA
- Stochastic Modeling: Theory and Reality from an Actuarial Perspective
- Available on the IAA website



## **General issues**

- What factors should be stochastically generated?
- When should I be using stochastic models?
- When should I not use stochastic models?
- Are there alternatives to stochastic models?
- What are the disadvantages of stochastic models?



## When should I be using stochastic models?

- Are these required by regulation or professional guidelines?
- Do we need a better understanding of the effects of extreme outcomes?
- Do we need a better understanding of the tail risk or risks in general?
- What is the probability of an event?
- What is the probability of ruin?
- Are certain risk measures needed for reporting?



## When should I NOT use stochastic models?

- Can you calculate a probability distribution?
- Can you calibrate the model?
- Can you validate the model?



## Are there alternatives to stochastic models?

- Stress testing/Scenario testing
- Static factors/PADs/MADs
- Range testing



# What are the disadvantages of stochastic models?

- "Black Box"
- Inappropriate distributions
- Inappropriate parameters
- Improper calibration
- Validation Beware of false positives
- Model size
- Computer power



#### • Two general approaches

- Calibration to historical experience
- Calibration to current market conditions

#### Considerations

- Does the model track to expected assumptions?
- Reflect expectations today?
- Experience period
- Range of possible outcomes?
- Extremes



#### • Calibration to historical experience

- Can you create a distribution?
- Expected
- Correlations
- Volatility
- Mean reversion



#### Calibration to current market conditions

- Observed market prices or conditions
- Closed form formula
- Market consistent results



## **Model validation**

#### • How do I validate a model?

- Cellular checking
- Reasonableness review
- Assumption review
- Formula testing
- Calibration review
- Distribution of outcomes

a model? eview



### Model peer review

#### Documentation review

- Source of data
- Experience period
- Testing
- Audit/Checking/Peer review

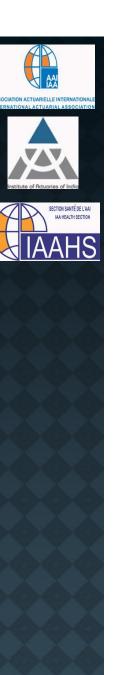


- Reviewed for accuracy?
- Credible data?
- Model and parameter development?
- Correlations?
- Testing
- Validation

- Average
- Outliers worst case and best case
- Specific scenario
- Type of audience

## **Model communication**

- Source of information
- Development of assumptions
- Development of correlations
- Expected assumptions




## Model audit

- Cell checking
- Review of distributions, range of outcomes, extreme cases
- Correlation checking
- New set of scenarios produce similar results



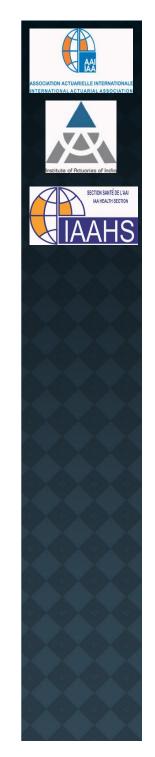
## Short term medical insurance risk model



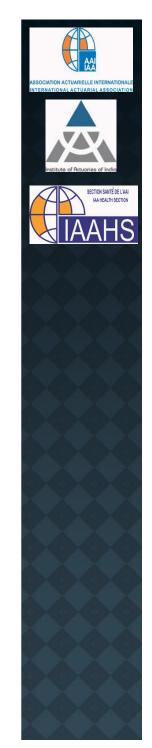
13<sup>th</sup> Global Conference of Actuaries 2011

- What is stochastic modeling used for in short term medical insurance?
  - Claim level estimation
  - Surplus requirements (Economic capital)
  - Distribution of medical loss ratios
  - Stop loss rating
  - Other




- What are major risks to insurance companies selling short-term medical insurance products?
  - Rating parameter adequacy
  - Regulatory issues / Delays
  - Catastrophic events
  - Expense recoupment
  - Other




- Is stochastic modeling necessary to establish surplus requirements?
  - No
  - However, it is superior to deterministic models that involve projection of a limited set of likely scenarios
  - Also, it is superior to peer group analysis
    - Where conclusions are drawn from companies with "similar" characteristics
  - Stochastic models allow for simultaneous consideration of multiple risk factors and ranges of possible outcomes



- What are some of the considerations in developing a stochastic model?
  - Establish risk level high likelihood, sufficiency, virtual certainty corresponding to 90<sup>th</sup>, 95<sup>th</sup>, 98<sup>th</sup> percentiles
  - Determine risks to include in model
  - Develop distributions of outcomes for each risk, based on ranges of potential outcomes
    - Some risks can be easily measured and parameterized
    - Other risks may be more subjective and harder to define
    - Interdependent risks need to be evaluated



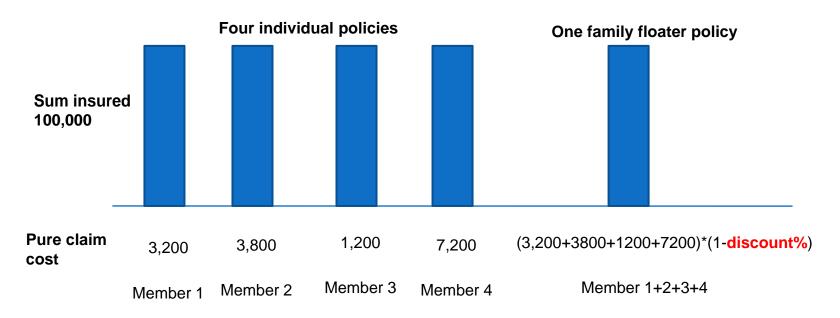
- How are stochastic models tested to ensure meaningful results?
  - Sufficient number of iterations are run to ensure stability of result
  - Underlying distributions are calibrated to observed data history
  - Model results are validated by comparison to other independent approaches or results



- Examples of stochastic modeling used in short term Indian medical insurance:
  - Pricing
    - Family floater discount calculation
    - Top-up policies,
    - Corporate buffers
  - Stochastic reserving
  - Optimal surplus / Economic capital modeling



## Example


## Calculating discounts for family floater policies

13<sup>th</sup> Global Conference of Actuaries 2011



#### • Problem

- Will the pure claim cost of a Sum insured (SI) 100,000 family floater for a family be different from the sum of four SI 100,000 policies for each of them?
- What would be the discount on the sum of the pure claim costs to arrive at the family floater pure claim cost?



#### 13<sup>th</sup> Global Conference of Actuaries 2011



#### • Why discount?

- The discount is applicable on the sum of the individual pure claims costs for the same age and same sum insured
- The discount comes due to the fact that there are chances of a scenario where the total payment under a family floater with 100,000 SI will be lower than the total payment for a combination of four individual 100,000 SI policy



#### Solution approach

- We need the correct pure claim cost for the family floater policy to be able to compare that with the sum of the individual pure claim costs and calculate the discount%.
- How do we do that?



#### Solution approach using stochastic modeling

- 1. Simulate the gross claim amount for each member
- 2. Calculate the net claim for each member for SI cap of 100,000
- **3.** This gives the pure claim cost for each member for SI 100,000
- 4. In step 1, summing the four gross amounts gives the gross claim amount for the family
- 5. Get the net claim for the family by applying the SI cap of 100,000
- 6. This gives the pure claim cost for each member for SI 100,000
- 7. Comparing the pure claim cost in step 8 with the total of step 5 gives the discount% applicable







-

\_

-

\_

-

-

-

\_

-

-

-

52.601

-

-

-

-

-

-

-

\_

6

7

8

9

-

-

-

52.601

-

78,113

-

-

-

78,113

-

\_

-

78,113

-

52,601

-

78,113

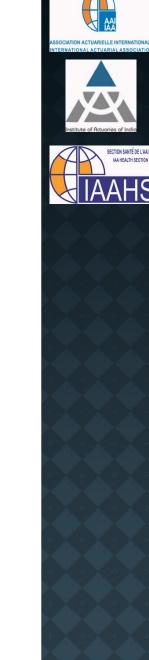
-

52,601

-

78,113

-


52.601



CIATION ACTUARIELLE INTERN

#### Scenario

- Sum insured: Rs. 1,00,000
- Family composition
  - One adult male 51 years
  - One adult female 45 years
  - One kid 11 years
  - Second kid- 17 years
- Benefits covered
  - Inpatient
  - Daycare
  - Maternity



### Simulations considerations

- What should be simulated? Claim numbers and claim amounts (and get the total claim by multiplying the two) or the total claim from a member directly.
- Which distributions to use for claim number and claim amount simulation? Choice between empirical distribution and parametric distributions.
- Does the chosen distribution reflect the 'humps' and the 'tail' (extreme values) appropriately?
- How many age-bands should be considered?



### Simulations considerations

#### • Empirical distribution may be based on

- 1. '*claim incidence rate*' (expected number of claims per exposure) and '*claim amount per claim*'
- 2. 'claim probability' and 'total amount of claim per member given a claim'



| Clai       | m bands    | Probabilities | Clain     | n bands   |            | Proba      | bilities   |            |
|------------|------------|---------------|-----------|-----------|------------|------------|------------|------------|
| Lower      | Upper      | Age-band 1    | Lower     | Upper     | Age-band 1 | Age-band 2 | Age-band 3 | Age-band 4 |
| 1          | 10,000     | 24.03%        |           | 0 0       | 95.00%     | 96.00%     | 93.00%     | 87.00%     |
| 10,001     | 25,000     | 30.00%        | 1         | 10,000    | 1.20%      | 0.70%      | 0.80%      | 1.00%      |
| 25,001     | 50,000     | 37.00%        | 10,001    | 25,000    | 1.50%      | 0.90%      | 1.00%      | 1.80%      |
| 50,001     | 100,000    | 6.00%         | 25,001    | 50,000    | 1.85%      |            |            |            |
| 100,001    | 250,000    | 2.00%         | 50,001    |           | 0.30%      |            |            |            |
| 250,001    | 500,000    | 0.60%         | 100,001   |           | 0.10%      |            |            |            |
| 500,001    | 1,000,000  | 0.20%         | 250,001   |           | 0.03%      |            |            |            |
| 1,000,001  | 5,000,000  | 0.17%         |           |           |            |            |            |            |
|            | Total      | 100.00%       | 500,001   | 1,000,000 | 0.01%      |            |            |            |
|            |            | •             | 1,000,001 | 5,000,000 | 0.01%      |            |            |            |
| Claim inci | dence rate | 5.13%         |           | Total     | 100.00%    |            |            |            |
|            |            |               |           |           | _          | -          |            |            |



#### Type 2

- 1) is easily available using the exposure and claim data by age. 2) is possible only when the exposure and claims can be linked by a 'key'.
- Alternatively, using 1), 2) can be 'simulated'

#### Numbers for illustration purposes only

13<sup>th</sup> Global Conference of Actuaries 2011



### Simulations considerations

- Which distributions to use for claim number and claim amount simulation?
  - Parametric claim amount distributions such as LogNormal may not reflect the 'actual' distribution behavior for example
    - Tail probabilities
    - Distribution humps at certain claim bands e.g. 100,000 to 300,000 for age bands 50-70 due to major surgeries at this age
  - Empirical distributions can be used so as to simulate from 'near real' scenarios
  - Judgmental smoothing may be required at the tail



#### Calibration

- Initial estimates obtained from 'claims database'
- Each claim mapped to benefit type using ICD
- Mean and Standard Deviation calculated using historical data to be used for *LogNormal*
- We have used *Poisson* for claim number and *LogNormal* for claim amount simulation

|             | Initial Estir  | nates from Data  |        |          |
|-------------|----------------|------------------|--------|----------|
|             |                | Inpatient        |        |          |
|             | Adult 1 - Male | Adult 2 - Female | Kid 1  | Parent 1 |
| Frequency   | 4.96%          | 4.59%            | 3.15%  | 8.23%    |
| Cost - Mean | 60,956         | 53,069           | 28,476 | 78,476   |
| Cost - SD   | 54,860         | 47,762           | 25,629 | 70,629   |
|             |                | Daycare          |        |          |
|             | Adult 1 - Male | Adult 2 - Female | Kid 1  | Parent 1 |
| Frequency   | 0.96%          | 0.92%            | 1.20%  | 2.20%    |
| Cost - Mean | 30,693         | 30,327           | 14,325 | 45,325   |
| Cost - SD   | 26,089         | 25,778           | 12,176 | 38,526   |
|             |                | Maternity        |        |          |
|             | Adult 1 - Male | Adult 2 - Female | Kid 1  | Parent 1 |
| Frequency   |                | 15.00%           |        |          |
| Cost - Mean |                | 31,244           |        |          |
| Cost - SD   |                | 18,746           |        |          |

|                  | Model 1        | Parameters         |         |          |
|------------------|----------------|--------------------|---------|----------|
|                  |                | Frequency Based on | Poisson |          |
|                  | Adult 1 - Male | Adult 2 - Female   | Kid 1   | Parent 1 |
| npatient         | 4.96%          | 4.59%              | 3.15%   | 8.23%    |
| DayCare          | 0.96%          | 0.92%              | 1.20%   | 2.20%    |
|                  |                | Cost Based on Logi | normal  |          |
|                  | Adult 1 - Male | Adult 2 - Female   | Kid 1   | Parent 1 |
| npatient - Mean  | 10.72          | 10.58              | 9.96    | 10.97    |
| npatient - SD    | 0.77           | 0.77               | 0.77    | 0.77     |
| DayCare - Mean   | 10.06          | 10.05              | 9.30    | 10.45    |
| DayCare - SD     | 0.74           | 0.74               | 0.74    | 0.74     |
| Aaternity - Mean |                | 10.20              |         |          |
| Maternity - SD   |                | 0.55               |         |          |

#### 13th Global Conference of Actuaries 2011




### Simulation steps

#### • Claim numbers

- Generate a random number from a uniform distribution, U(0,1)
- Compare it with the cumulative probabilities of the calibrated Poisson distribution to generate the corresponding Poisson variate.
- Repeat the process for each family member

#### Claim amounts

 Generate from Lognormal using any of the standard methods e.g. transformation of a Uniform random variate or using the Excel spreadsheet function.



#### Results from one simulation

Claim incidence

|                       |            | Frequency    | Simulation |        |
|-----------------------|------------|--------------|------------|--------|
| Benefits              | Adult Male | Adult Female | Kid        | Parent |
| Inaptient             | 1          | -            | -          | -      |
| Day Care<br>Maternity | -          | -            | -          | 1      |
| Maternity             |            | -            |            |        |
| Total                 | 1          | _            | -          | 1      |

#### Severity per Claim

|           |          |         |                |         |           | Cost Si        | mulation |         |                |          |         |                |
|-----------|----------|---------|----------------|---------|-----------|----------------|----------|---------|----------------|----------|---------|----------------|
| Benefits  |          | Adult M | ale            |         | Adult Fer | nale           |          | Kid     |                |          | Paren   | t              |
|           | Claim 1  | Claim 2 | Total Severity | Claim 1 | Claim 2   | Total Severity | Claim 1  | Claim 2 | Total Severity | Claim 1  | Claim 2 | Total Severity |
| Inaptient | 25,777.6 | -       | 25,777.6       | -       | -         | -              | -        | -       | -              | -        | -       | -              |
| Day Care  | -        | -       | -              | -       | -         | -              | -        | -       | -              | 19,985.5 | -       | 19,985.5       |
| Maternity |          |         |                | -       |           | -              |          |         |                |          |         |                |
| Total     | 25,777.6 | -       | 25,777.6       | -       | -         | -              | -        | -       | -              | 19,985.5 | -       | 19,985.5       |

Severity per member (all claims)

|                | Adult Male | Adult Female | Kid | Parent   |
|----------------|------------|--------------|-----|----------|
| Total Severity | 25,777.6   | -            | -   | 19,985.5 |

#### 13<sup>th</sup> Global Conference of Actuaries 2011



#### • Results from 10,000 simulations

Unlimited severity per member

| Simulations |            |              |        |           |         |  |  |
|-------------|------------|--------------|--------|-----------|---------|--|--|
| Sr. No      | Adult Male | Adult Female |        | Parent    | Total   |  |  |
| 1           | -          | -            | -      | - '       | -       |  |  |
| 2           | -          | -            | -      | -         | -       |  |  |
| 3           | -          | -            | -      | -         | -       |  |  |
| 4           | -          | -            | -      | -         | -       |  |  |
| 5           | -          | -            | -      | -         | -       |  |  |
| 6           | -          | -            | -      | -         | -       |  |  |
| 7           | -          | -            | -      | 78,113    | 78,113  |  |  |
| 8           | -          | -            | -      | -         | -       |  |  |
| 9           | 52,601     | -            | -      | -         | 52,60   |  |  |
| 10          | -          | -            | -      | -         | -       |  |  |
| 11          | -          | -            | -      | -         | -       |  |  |
| 12          |            | -            | -      | -         | -       |  |  |
| 13          |            | -            | -      | -         | -       |  |  |
| 14          |            | -            | -      | -         | -       |  |  |
| 15          |            | -            | -      | 177,082   | 177,08  |  |  |
| 16          | -          | -            | 43,437 | -         | 43,43   |  |  |
| 17          | -          | 44,128       | -      | 46,741    | 90,870  |  |  |
| 18          |            | -            | -      | -         | -       |  |  |
| 19          | -          | -            | -      | -         | -       |  |  |
| 20          | -          | 20,645       | -      | 227,382 < | 248,02  |  |  |
| 21          | -          | -            | -      | -         | -       |  |  |
| 22          |            | -            | -      | -         | -       |  |  |
| 23          |            | 88,856       | -      | -         | 88,850  |  |  |
| 24          | -          | -            | -      | -         | -       |  |  |
| 25          | -          | -            | -      | -         | -       |  |  |
| 26          | -          | -            | -      | 36,222    | 36,222  |  |  |
| 27          | -          | -            | -      | -         |         |  |  |
| 28          | -          | 113,942      | -      | .<        | 113.942 |  |  |





Numbers for illustration purpose only







**13th Global Conference of Actuaries 2011** 

### Emerging Risks... Daring Solutions



This presentation and Q&A is not intended to be an actuarial opinion or advice, nor is it intended to be legal advice. Any statements made during the presentation and subsequent Q&A shall not be a representation of Milliman or its views or opinions.