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The Variability of the IBNR – Mack, Murphy and Peterson Formulas. 
 

By Thomas G. Kabele 
 
 
Increasingly actuaries are called on to estimate the variability of the loss reserves In this note we 
examine estimates of the mean square error of the chain ladder estimate of Loss reserves 
including  
 
(1) Thomas Mack’s estimates (1993, 1994, 1999) 
(2) Timothy Peterson (1980) estimate. 
(3) Daniel Murphy’s estimates (1994) 
  
Section 1 Formulas.  
We give the classical formulas for the loss reserves. 
 
Section 2 Consistency. 
We prove that the Mack assumptions are consistent for all his formulas including the 0α =  
(simple average), 1α =  (weighted average) and 2α =  (weighted average) formulas. We show 
that the Murphy assumptions are consistent for the simple average case but not for the other 
cases. We show that the link factors are not independent for the 1 and =2α α=  cases. (Greg 
Taylor mentioned the independent assumption in his proof of Mack’s 1α =  case but the proof 
doesn’t need independence.) The link factors might be independent in the α =0 case. 
 
Section 3 Mack and L-predictors. 
Mack completed the proof for 1α =  case and outlined the proof for the other cases. In the 
second part of the paper we completed those and produced some new estimates, which we call 
“L-predictors.” The “L-predictors” give practically the same result in the typically case when the 
claims data increases by age, but a different result when the claims data decreases (as with 
case reserves). We also proved a “summation theorem” which was needed to plug a potential 
problem with the proofs.  
 
Section 4 - Peterson. 
Timothy Peterson (1980) noted the variability of loss reserves might be estimated using 
maximum and minimum link ratios, instead of just averages -- but he noted that this method was 
flawed. We showed how to refine his technique by using the standard deviations of the link 
factors.  
 
Section 5 -Murphy. 
We redid Murphy’s proof for the simple average case using a notation consistent with Mack’s. 
Murphy did not use the mean square error to estimate the variability, but defined the variability in 
terms of the “process risk” and the “parameter risk.” 
 
Section 1. NOTATION for the Chain Ladder Formulas. 
1. We assume our claims data is grouped by accident year and development age. (We could 
also use report years or policy years in place of accident years and use valuation date instead of 
development age.)  We let m I= = number of accident years; n J= = number of development 
age intervals. We assume m n³ .  
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2. We let ,i kC = cumulative claims for accident year , (1 )i i m≤ ≤  up to development age 

, (1 )k k n≤ ≤ . We assume 1i =  is the oldest accident year, and development age 1k =  is the 
first development period. The claims could be in monetary units (say $) and could be paid, case 
reserves, or case incurred (case reserve + paid); or they could represent claim counts (reported, 
outstanding, or closed with payment).  
3. We assume that D = ,{ : 1;1 }i kC i k m k n+ ≤ + ≤ ≤ = “known” data, and that we are to estimate 

the “unknown” part of the rectangle, namely ,{ : 1}i kC i k m+ > + . We especially want the 

“ultimate” values at development age n , namely ,{ : 1,..., }i nULT C i m= = . 

 
In the following claims rectangle there are m=5 accident years, n=4 development years and the 
“known” part of the triangle is listed. 

1,1 1,2 1,3 1,

2,1 2,2 2,3 2,

3,1 3,2 3,3

4,1 4,2

,1

n

n

m

C C C C

C C C C

C C C

C C

C

 
 
 
 
 
 
  

 

 
4. An accident year is said to be “fully developed” at development age k  if , , 1 , 2i k i k i kC C C+ += =  

etc. We assume that the oldest accident years with 1i m n≤ + −  are fully developed, and that 
2q m n= + −  is the first accident year that is not fully developed. 

 
S1.1. CHAIN LADDER ESTIMATES  
The following definitions are from Mack, Cas. Forum, 1994, p113 and Astin Bulletin 1999. Using 
only the known part of the loss rectangle we compute factors (1)-(6) below. We are given some 
weights: ,{ : ; 1 1}i jw i j m j n+ ≤ ≤ ≤ −  (often equal to 1). We then define: 

(1) Age to age factors: , , 1 ,/ ( ) ( 1,..., 1)i k i k i kF C C i k m k n+= + ≤ = −  

(2) Average age to age factors  

 (a) , , ,
1 1

ˆ / ( 1,..., 1)
m k m k

k i k i k i k
i i

f F w w k n
− −

= =
= = −∑ ∑   (simple average, 0α = ) 

 (b) , , , , ,
1 1

ˆ / ( 1,..., 1)
m k m k

k i k i k i k i k i k
i i

f F C w C w k n
− −

= =
= = −∑ ∑  (weighted average, 1α = ) 

 (c) 2 2
, , , , ,

1 1

ˆ / ( 1,..., 1)
m k m k

k i k i k i k i k i k
i i

f F C w C w k n
− −

= =
= = −∑ ∑  (least squares average, 2α = ) 

(d) General case: , ,
1

ˆ ˆ ˆ/
m k

k i k i k k
i

f F β β
−

=
= ∑  where  , , ,

ˆ
i k i k i kw Cαβ =  for ; 1 1i k m k n+ ≤ ≤ ≤ −  and 

{0,1,2}α∈  and ,
1

ˆ ˆ
m k

k i k
i

β β
−

=
= ∑  

(3) Age to Ultimate factors: 1 /
1 1

1  if  i 1+m-nˆˆ ˆ ˆ...  if 1i m i n
m i n

u f
f f m n i m+ −

+ − −

≤= = 
+ − < ≤
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 (4) Spread Factor 2 2
, , ,

1

1 ˆˆ ( )
1

m k

k i k i k i k k
i

w C F f
m k

ασ
−

=
= −

− − ∑ 1 min( 2, 1)k m n≤ ≤ − −  

 
(5a) The “losses to date” are those that lie on the diagonal ,{ : 1}i jLTD C i j m= + = + . 

(5b) The ultimate losses are those on the last column ,{ : 1,..., }i nULT C i m= =  

(5c) The unknown remaining losses are , , 1i i i i n i m iR ULT LTD C C + −= − = −  

(6a) Alternative notation for claims in the known region: , ,
ˆ
i k i kC C=   

(6b) Estimated Claims in the unknown region: , , 1
ˆ ˆˆ   where  1i k i p p kC C f f k p m i−= > = + −L  

(6c) Estimated Ultimate Claims, accident year i : ,
ˆˆ { : 1,..., }i nULT C i m= =  where  

  , , 1
ˆ ˆˆ

i n i p p nC C f f −= L  where 1p m i= + −  for 1,....,min( , )i m n=  and  

  , ,
ˆ
i n i nC C=  for min( , )i m n> . 

(6d) Estimated Loss Reserve, accident year i  (IBNR): ˆ ˆ
i i iR ULT LTD= − . 

(6e) Estimated Loss Reserve, all accident years 
1

ˆ ˆ
m

i
i

R R
=

= ∑ . 

 
S2. CHAIN LADDER ASSUMPTIONS and Their Consistency. 
Mack in the 1993, 1994 and 1999 papers showed how to estimate the “mean square” error of 
the estimated loss reserves by making certain reasonable stochastic assumptions. These 
assumptions are shown below, using contingent expectation. The parameter {0,1,2}α∈  and 

weights ,{ :1 ; 1 }i jw i m j n≤ ≤ ≤ ≤  are fixed. by the actuary.  

 
 We assume: that the ,{ :1 , 1 }i kC i m k n≤ ≤ ≤ ≤  are random variables on some probability 

space ( , ,Prob)Ω A  and that , 0i kC > . We do not require that for each fixed accident year i  

that ,{ : 1,..., }i kC k n=  be an increasing sequence. We assume there are unknown constants 

{ : 1,..., 1}kf k n= −  and 2{ : 1,..., 1}k k nσ = −  such that: 

CL1. , ,1 ,( | ,..., )i k i i k kE F C C f=  where ( 1,..., ) ( 1,..., 1)i m k n= = −  

CL2. 2
, ,1 , ,( | ,..., ) /i k i i k k i kVar F C C σ β=  where ( 1,..., ) ( 1,..., 1)i m k n= = −  and  

, , ,   i k i k i kw Cαβ =  and where {0,1,2}α∈ . 

CL3. The accident years ,1 , ,1 ,{ ,...., }  and  { ,...., }g g n i i nC C C C  are independent for all  and g i .  

 
Note that the assumptions and the weights , , and i k i kw β  apply to both the known part of the loss 

rectangle ,{ : 1}i jD C i j m= + ≤ +  and the unknown part: ,{ : 1}i jC i j m+ > + .  
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S2.1. Alternate notation for contingent expectations. 
We use an “operator” notation for contingent expectations. Let H  be a collection of random 
variables -- or more generally a σ  subalgebra of A . We often write ( )HE X  in place of 

( | )E X H  where X  is any integrable random variable. It is important to note that 

( ) ( | )HE X E X H=  is a random variable and not a constant. We define: 

(a)  2Var ( ) ( ) ( ) ( )H H H HX E X E X E X= −  

(b)  “ X  is perpendicular to Y ” ( )X Y⊥  means ( ) 0E X Y =  
(c) “ X  is H-measurable” is as defined in advanced texts, such as Loeve, Probability Theory. If 
H  is a set of random variables, then a sufficient condition for “X is H-measurable” is that X  is a 
linear combination or a continuous function of elements of .H  
 
We list some of the properties of conditional expectation below, where , , , ,i iH G D H D  are 

various sets of random variables (or σ  subalgebras of A ). 
 
0. Linear combinations. 
 ( ) ( ) ( )  where ,H H HE aX bY a E X bE Y a b+ = + ∈ R  
 
1. Iteration. 
 (a) ( ) ( )HEE X E X=  

 (b) ( ) ( ) ( )H G G G HE E X E X E E X= =  if .G H⊆  
 
2. Independence. 
  (a) ( ) ( )H G GE X E X∪ =  if  is independent of both  and  H G X  

 (b) If G and X are independent, then ( ) ( )GE X E X=  and 2 2( ) ( )GE X E X=  

 and ( ) ( )GVar X Var X=  

(c) Suppose that :iX S → ¡  are iH  measurable, and iH  are independent and suppose 

that iD H⊆i . Then ( )D iE X
i

 are independent and 

1 2 1 2 1 2 1 21 2 1 2 1 2( ) ( ) ( ) ( ) ( )D D D D D D D DE X X E X E X E X E X∪ ∪ ∪= =  

 
3. Variance 
 (a) Var( ) Var ( ) Var ( )H HX E X E X= +  

 (b) Var ( ) Var ( ) Var ( )G G H G HX E X E X= +  if .G H⊆  
 
4. Factoring out. 
 If h  is an H-measurable random variable, and X  is any (integrable) random variable, then 

(a)  ( ) ( )H HE X h h E X=  and 2( ) ( )H HVar X h h Var Y= . 

 (b) ( ) ( )H HE X h h E X+ = +  and ( ) ( )H HVar X h Var X+ =  
 
5. Other Properties. 
 (a) ( )HE X X=  if X  is H-measurable 

 (b) ( ) 0HE X =  if X  is perpendicular to the H-measurable functions 
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We can prove all of the above using the following properties: 
 (a) ( )HE X  is “H-measurable” 

 (b) ( )HX E X−  is “perpendicular” to the “H-measurable” random variables. 
See Loeve and other advanced texts on probability for details. 
 
 
S2.2 SETS of VARIABLES and the CHAIN LADDER ASSUMPTIONS.  
We use the following sets of variables in the formulas in this paper.  

,{ : 1}i kD C i k m= + ≤ +  = known values 

,{ : }k i jB C j k= ≤  = data on or prior to development age k . 

,{ : 1,..., }i i kA C k n= =  = i -th accident year . 

i iD D A= ∩  = i -th accident year, but known values. 

, ,{ : }i k i k i jG A B C j k= ∩ = ≤  = i -th accident year, on or prior to development age k. 

1 1 2  1st to kth accident yeark kA A A A= ∪ ∪ ∪ =L  

1 ,{ : 1 ; 1 }k k m k i j kL B A C i m k j k D B−= ∩ = ≤ ≤ − ≤ ≤ ⊂ ∩   

The ,{ , , }k i i kB A G  include both known and unknown values.  

 
Using the above notation for conditional expectation the Chain Ladder hypotheses can be 
defined as follows: 
 
Chain Ladder Assumptions (see Mack 1999, page 362) 
CL1. 

, ,( )
i kG i k kE F f=  where ( 1,..., ) ( 1,..., 1)i m k n= = −  

CL2. 
,

2
, ,( ) /

i kG i k k i kVar F σ β=  where , , ,i k i k i kw Cαβ =  ( 1,..., ) ( 1,..., 1)i m k n= = −  and  

, , ,   i k i k i kw Cαβ =  and where {0,1,2}α∈ . 

CL3. The accident years iA  are independent for all i .  
 
Other Formulations 
Let us define the incremental claims by: 

, 1 , 1 ,i k i k i kS C C+ += −  for , 1 , 1 ,i k i k i kS C C+ += −  and ,1 ,1i iS C= . 

We can give the following alternative versions of CL1 and CL2. 
 
For cumulative claims: 
CL1: 

, , 1 ,( )
i kG i k i k kE C C f+ = . 

CL2: 
,

2 2
, 1 , ,( ) /

i kG i k k i k i kVar C Cσ β+ =  where , , ,i k i k i kw Cαβ = . 

For Incremental Claims: 
CL1: 

, , 1 ,( ) ( 1)
i kG i k i k kE S C f+ = − . 

CL2: 
,

2 2
, 1 , ,( ) /

i kG i k k i k i kVar S Cσ β+ =  where , , ,i k i k i kw Cαβ = . 
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The formulas are summarized below:  
 
 Link factors Cumulative Claims Incremental Claims 
CL1 

, ,( )
i kG i k kE F f=  

, , 1 ,( )
i kG i k i k kE C C f+ =  

, , 1 ,( ) ( 1)
i kG i k i k kE S C f+ = −  

CL2 
0α =

 
,

2
, ,( ) /

i kG i k k i kVar F wσ=  
,

2 2
, 1 , ,( ) /

i kG i k k i k i kVar C C wσ+ =
 

,

2 2
, 1 , ,( ) /

i kG i k k i k i kVar S C wσ+ =
 

CL2 
1α =  ,

2
, , ,( ) /

i kG i k k i k i kVar F w Cσ=
 

,

2
, 1 , ,( ) /

i kG i k k i k i kVar C C wσ+ =
 

,

2
, 1 , ,( ) /

i kG i k k i k i kVar S C wσ+ =
 

CL2 
2α =

 

,
2 2

, , ,( ) /
i kG i k k i k i kVar F w Cσ=

 
,

2
, 1 ,( ) /

i kG i k k i kVar C wσ+ =  
,

2
, 1 ,( ) /

i kG i k k i kVar S wσ+ =  

 

Remark. If the Claims ,i jC  are in monetary units (say $) and if 1α = , then the 2
kσ  and 

the , , ,i k i k i kw Cαβ = will be expressed in dollars. If 2α = , then 2
kσ  and the ,i kβ  will be 

expressed in dollars squared. If 0α = , then 2
kσ  and the ,i kβ  are dimensionless. In all 

cases the quotient 2
,/k i kσ β  is dimensionless. 

 

Remark. If 0α =  then 
,

2
, ,( ) /

i kG i k k i kVar F wσ=  is a constant which does not depend on 

the claim amounts. Also  

 
, , ,

2 2 2 2 2
, , , ,( ) Var ( ) ( ) /

i k i k i kG i k G i k G i k k i k kE F F E F w fσ= + = +   

 
S2.3. CONSISTENCY 
Before one uses any model one should prove that the model is consistent. We will therefore give 
examples of random variables that satisfy each of the three assumptions -- for {0,1,2}α∈ . We 
use the following theorem: 
 
Theorem (from the Kolmogorov Existence Theorem). Given any distribution functions 
{ ( ) :1 }nF x n≤ < ∞  we can find a probability space ( , ,Prob)Ω A  and independent random 

variables { :1 }nX n≤ < ∞  having the { ( ) :1 }nF x n≤ < ∞  as distributions. 
Proof. See Billingsley, Probability and Measure (Wiley, 3rd ed, 1995) page 265 and cf. 486, 73.  
 
Remark. To describe the model we need only describe only one of the rows, for suppose the 
first row satisfies CL1 and CL2. By the Kolmogorov Existence Theorem we can find for each row 

2,...,i m=  variables ,1 ,{ , , }i i nC CK  which are independent of the other rows and have the same 

distribution as the first row.  
  
Theorem. The models are all consistent-- that is we can define positive random variables that 
satisfy CL1-CL2-CL3 for {0,1,2}.α∈ . 
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Proof for 0α =  model. Fix the -thi accident year. By the Kolmogorov existence theorem pick 

independent random variables 0 1{ ,..., }nT T −  for which 2
k ,( )  and Var(T ) /k k k i kE T f wσ= = . Let 

,1 0iC T=  and , 1 ,i k i k kC C T+ = . Then 

,   for  1,..., 1i k kF T k n= = − . By computation we find 

 
, , ,1 , 0 1( ) ( | ,..., ) ( | ,..., )

i kG i k k i i k k kE F E T C C E T T T −= =  

But since the { }kT  are independent the above equals ( ) .k kE T f=  
Likewise 

, , ,1 , 0 1( ) ( | ,..., ) ( | ,..., )
i kG i k k i i k k kVar F Var T C C Var T T T −= =  

2
,( ) /k k i kVar T wσ= =  

 
Proof for 2α =  model. Let { :1 }k k nε ≤ ≤  be independent random variables with mean 

( ) 0kE ε =  and variance 2( )k kVar ε σ= . Let ,1iC  be any positive random variable independent of 

the { :1 }k k nε ≤ ≤ . Define 

 , 1 , 1i k k i k kC f C ε+ += +  

By computations, since ,i kC  is ,i kG  measurable: 

 
, ,, 1 , 1 ,1 , , , 1( ) ( | , , ) ( )

i k i kG i k i k i i k k i k G i kE C E C C C f C E ε+ + += = +K  

But by independence 
, , 1 , 1( ) ( ) 0

i kG i k i kE Eε ε+ += = . Likewise 

  
, ,, 1 , 1 ,1 , , 1( ) ( | , , ) ( )

i k i kG i k i k i i k G i kVar C Var C C C Var ε+ + += =K  

Again by independence 
,

2
, 1 , 1( ) ( )

i kG i k i k kVar Varε ε σ+ += =  

   
Proof for 1α = . Let { :1 }k k nε ≤ ≤  and ,1iC  be as in the 2α =  model. Define 

 , 1 , 1 ,i k k i k k i kC f C Cε+ += +  

Then 

, ,, 1 , 1 ,1 , , , , 1( ) ( | , , ) ( )
i k i kG i k i k i i k k i k i k G i kE C E C C C f C C E ε+ + += = +K  

,k i kf C=  

Likewise 
 

, ,, 1 , 1 ,1 , , , 1( ) ( | , , ) ( )
i k i kG i k i k i i k i k G i kVar C Var C C C C Var ε+ + += =K  

 2
, , 1 ,( )i k i k i k kC Var Cε σ+= =  

The proof is done. 
 
Remark. The above proof shows that for 0α =  we can add an additional hypothesis: 
 CL4. The ,{ :1 }i kF k n≤ ≤  are independent. 

We cannot, however, extend CL4 to the 1 or 2α α= =  cases. (By some additional work we can 
find cases where CL1-CL2-CL3 are true but CL4 is false for 0α = .) 
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Proposition. Assume that all of our random variables are based on a probability space 
( , ,Prob)Ω A . Fix the i th−  accident year. Assume none of the random variables 

{ ,{ :1 }i kC k n≤ ≤  are constant. Let 0, ,1k iF C= . We have: 

(a) In the 1 or 2α α= =  cases the link ratios ,{ : 0 }i kF k n≤ ≤ cannot be independent. 

(b) In all cases the cumulative claims ,{ :1 }i kC k n≤ ≤  cannot be independent. 

(c) In all cases the incremental claims ,{ :1 }i kS k n≤ ≤  cannot be independent. 

Proof (a) Note that 1 , ,0 , 1{ ,..., } and { ,..., }i i k i i kC C F F −  generate the same σ -subalgebra of 

A since , , 1 ,/i k i k i kF C C+= . If the ,{ :1 }i kF k n≤ ≤  were independent then  

, ,1 , , ,0 , 1( | , ) ( | , )i k i i k i k i i kVar F C C Var F F F −=K K  would be constant, but this is not true by CL2 for 

the 1 or 2α α= =  cases.  
Proof (b) If (for fixed )i the ,{ :1 }i kC k n≤ ≤  were independent then , 1 ,1 ,( | , , )i k i i kE C C C+ K  

would be constant, but this is not true by CL1. 
Proof (c) Note that ,{ :1 }i kC k n≤ ≤  and ,{ :1 }i kS k n≤ ≤  generate the same σ -subalgebra of 

A since , 1 , , 1 ,1 ,1  and  i k i k i k i iC C S C S+ += + = . If (for fixed i ) the ,{ :1 }i kS k n≤ ≤  were 

independent then , 1 ,1 ,( | , , )i k i i kE S S S+ K  would be constant, but this is not true by CL1. 

  
Remark. If we replace CL1 by the CL1A below,  then we can add CL5 below - i.e. we can make 
the m n× incremental claims ,{ :1 , 1 }i jS i m j n≤ ≤ ≤ ≤  mutually independent. 

 CL1A. For all :i  , 1 ,1 , 1( | , , )i k i i k kE S S S s+ +=K  where ks  is constant. 

 CL5. The ,{ :1 , 1 }i jS i m j n≤ ≤ ≤ ≤  are independent . 

Proof. By the Kolmogorov existence theorem choose ,{ :1 , 1 }i jS i m j n≤ ≤ ≤ ≤  to be 

independent with 2
, 1( )i k kVar S σ+ =  and ,( )i k kE S s=  (for all i  and k). Then CL5 holds. Also 

CL1A holds by independence of the ,{ :1 , 1 }i jS i m j n≤ ≤ ≤ ≤ . 

 

Definition. We define the estimator 2ˆ kσ  of the parameter 2
kσ  by 

 2 2
, ,

1

ˆˆˆ ( 1) ( )
m k

k i k i k k
i

m k F fσ β
−

=
− − = −∑  1 min( 2, 1)k m n≤ ≤ − −  

 
If m n>  then 2ˆkσ  are defined for 1,..., 1k n= - . 
 
Proposition. For 1 min( 2, 1)k m n≤ ≤ − −   

2 2 2
, ,

1

ˆˆ ˆˆ ( 1)
m k

k i k i k k k
i

m k F fσ β β
−

=
− − = −∑  where ,

1

ˆ ˆ
m k

k i k
k

β β
−

=
= ∑   
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Easy Proof Note 2 2 2
, , ,

ˆ ˆ ˆ( ) 2i k k i k i k k kF f F F f f− = − +  and use the definition , ,
1

ˆ ˆ ˆ/
m k

k i k i k k
i

f F β β
−

=
= ∑  

where ,
1

ˆ ˆ
m k

k i k
i

β β
−

=
= ∑ . 

Remark. If m n=  then we have to find some method of defining 2
1ˆnσ − . One possibility would be 

to use 2
2ˆnσ −  or the methods suggested in Mack, 1993-1994-1999. It would be helpful if 

Schedule P of the U.S. Property and Casualty Annual Statement showed (say) 12 accident 
years instead of 10 for it would make it easier to compute the standard deviation. 
 
 
S3. MACK’s Formulas and Related Estimators 
In this section we complete Mack’s proof for the 0,2α =  cases the prove a “summation 
theorem.” We also derive the L-estimators.  
 
Definition. Give any two random variables X and Y the mean square error with respect to 

,{ : 1}i kD C i k m= + ≤ +  is defined as 2mse( , ) ( ) .DX Y E X Y= −  The goals are to estimate the 

following “mean square errors.” (The accident year 2q m n= + −  is the first accident year that is 
not fully developed.)  

(a) 2
, , , ,

ˆ ˆmse( , ) ( ) ( ,..., )i n i n D i n i nC C E C C i q m= − =  

(b) 2
, , , ,

ˆ ˆmse( , ) ( )
m m m m

i n i n D i n i n
i q i q i q i q

C C E C C
= = = =

= −∑ ∑ ∑ ∑   

 
Remark 1. We first split up the above into two parts. (See Mack’s papers, Astin 1999 and Astin 
1993.) Let i  be a fixed accident year.) Thus  

 2 2
, , , , ,

ˆ ˆ( ) Var ( ) { ( ) }D i n i n D i n D i n i nE C C C E C C− = + − . 

(The two terms on the right hand side are computed in Theorem 3A and Theorem 3B.) 

Easy Proof. If X  is any random variable and Ŷ  is D-measurable then 

 2 2ˆ ˆ ˆVar ( ) Var ( ) ( ) ( )D D D DX X Y E X Y E X Y= − = − − − .  
  

Remark 2. , ,
ˆ ˆmse( , ) mse( , )i n i n i iC C R R=  for every accident year 1,..., .i m=  

Easy proof. Let , 1i i m iLTD C + −= . We recall 

(a) ,
ˆˆ

i i n iR C LTD= −  

(b) ,i i n iR C LTD= −  

Since ,
ˆ and i i nLTD C  are D -measurable: 

(c) ,
ˆˆ( ) ( )D i D i nVar R Var C=   

(d) ,
ˆˆ( ) ( )D i D i n iE R E C LTD= −  

Thus by remark 1: , ,
ˆ ˆmse( , ) mse( , )i n i n i iC C R R= . 
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Remark 3. Mack (1999 Astin Bulletin) also discusses the following mean square errors: 

(c) 
,

2
, ,mse( , ) ( )

i kk i k G k i kf F E f F= − where (1 ; 1 1)i m k n≤ ≤ ≤ ≤ −  

(d) 2ˆ ˆmse( , ) ( )
kk k L k kf f E f f= −  where (1 1)k n≤ ≤ −  

Since 
, ,( )

i kG i k kE F f=  we have 
, ,

2 2
, , ,( ) Var ( ) /

i k i kG i k k G i k k i kE F f F σ β− = = . 

Since ˆ( )
kL k kE f f=  we have 2ˆ ˆ ˆ( ) Var ( ) /

k kL k k L k k kE f f f σ β− = = . 

Mack (see Astin 1999) defines estimated predictors of the mean square errors as follows: 

(c’) 2
, , , , ,

ˆ ˆˆ ˆmse( , ) /   where k i k k i k i k i k i kf F w Cασ β β= =  

(d’) 2
k ,

1

ˆ ˆ ˆ ˆˆ ˆmse( , ) /   where  
m k

k k k k i k
i

f f σ β β β
−

=
= = ∑  

In (c’) Mack did not restrict ( , )i k  to 1.i k m+ ≤ +   
 
Remark. Let ,{ : 1}i jD C i j m= + ≤ + . The D-measurable random variables are unaffected by 

the operator DE . In particular: 

 (a) , ,
ˆ ˆ( )D i k i kE β β=  where i k m+ ≤ , 1,...., 1k n= −  

 (b) , ,D i k i kE F F=  where i k m+ ≤ , 1,...., 1k n= −  

 (c) ˆ ˆ( )   D k kE f f= where 1,...., 1k n= −  

 (d) 2 2ˆ ˆ( )D k kE σ σ=  where 1,...., 1k n= −   

 (e) , ,
ˆ ˆ( )D i n i nE C C=  where 1 i m≤ ≤  

 The proofs are easy -- Proof a. Under the hypothesis i k m+ ≤  , , ,
ˆ
i k i k i kw Cαβ =  is D-

measurable, since ,i kC D∈ . 

Proof. b. Under the hypothesis i k m+ ≤  both ,i kC  and , 1i kC +  are in ,{ : 1}i jD C i j m= + ≤ +  

and hence are D-measurable and hence the quotient ,i kF  is D-measurable. 

Proof c. By definition , ,
1

ˆ ˆ ˆ/
m k

k i k i k k
i

f F β β
−

=
= ∑ and , , ,

ˆ
i k i k i kC wαβ = and ,

1

ˆ ˆ
m k

k i k
i

β β
−

=
= ∑ are D-

measurable. Also the ,i kF  are measurable since 1i k m+ ≤ + . Hence (c) follows from (b). 

Proof d. Follows from (b) and (c) which show 2ˆ kσ  is D-measurable. 

Proof e. Follows since , , 1
ˆ ˆˆ

i n i p p nC C f f −= L  is D-measurable where 1p m i= + − . 

 
Theorem 1A (see Mack Astin 1993, p.215 for all but c2 and d) Let ,{ : }k i jB C j k= ≤  and 

,{ :1 ; }k i jL C i m k j k= ≤ ≤ − ≤ . Under CL1 to CL3 we have:  

 (a1) 
,, , ,( ) ( ) ( )

k k i kB i k L i k G i k kE F E F E F f= = =  where ( 1,..., ) ( 1,..., 1)i m k n= = −  

 (a2) ,( )i k kE F f=  where ( 1,..., ) ( 1,..., 1)i m k n= = −  

 (b1) ˆ ˆ( ) ( )
k kB k L k kE f E f f= =  where 1, , 1k n= −K   
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 (b2) ˆ( )k kE f f=  where 1, , 1k n= −K  

 (c1) ˆ ˆ( )j k j kE f f f f=  ( )j k<  

 (c2) 2 2ˆ ˆ( )j k j kE f f f f=  ( )j k<  

 (d) If 2 2ˆ( )
kB k kE f g=  (a constant), then 2 2 2 2 2 2ˆ ˆ ˆ ˆ( ) ( ) ( )j k j k j kE f f g g E f E f= =  for ( )j k<  

Proof a1.  
 

,, ,( ) ( )
k i kB i k G i kE F E F=  (using CL3 independence of accident rows and ,i k k iG B A= ∩ )  

,, ,( ) ( )
k i kL i k G i kE F E F=  (using CL3 independence of accident rows and ,i k k iG L A= ∩ ) 

Finally, 
, ,i kG i k kE F f= (using CL1). 

Proof a2. 
,, ,( ) ( )

i ki k G i k k kE F EE F E f f= = =  (using property of contingent expectation; (a1); and 

kf  is a constant).  

Proof b1. By definition. , ,
1

ˆ /
m k

k i k i k k
i

f F β β
−

=
= ∑  so , ,

1

ˆ ˆ ˆ( ) ( ) /
k k

m k

B k B i k i k k
i

E f E F β β
−

=
= ∑  (since 

, , ,
ˆ
i k i k i kC wαβ = and ,

1

ˆ ˆ
m k

k i k
i

β β
−

=
= ∑  are kB  and kL  measurable). But , ( )

kB i k kE F f=  by (a1). This 

proves (b1) for kB  The proof for kL  is identical, where kB  is replaced by kL . 

Proof b2. Follows from (b1) since 
kBEE E=  and ˆ( )

kB kE f  is a constant. 

Proof c1. ˆ ˆ ˆ ˆ( ) ( )
kj k B j kE f f EE f f j k= <  (property of projection operators) 

ˆ ˆ( )
kj B kE f E f=  (since ˆ

jf  is kB  measurable for j < k) 

 ˆ( )j kE f f= = ˆ( )k jf E f=  (using b1) 

ˆ ˆ( ) ( )k jE f E f=  (using b2) 

Proof c2 and d. Use the same proof as for (c1). 
 
Theorem 1B (Mack 1993, p215). Let ,{ : 1}i jD C i j m= + ≤ + . Under the chain ladder 

assumptions , ,
ˆ( ) ( )i n i nE C E C=  for every accident year 1, ,i m= K . In particular:  

 (a) , , 1( )D i n i p p nE C C f f −= L  where ( 1,..., )i m=  and 1p m i= + −   

 (b) , , 1( ) ( )i n i p p nE C E C f f −= L  where ( 1,..., )i m=  

 (c) , , 1
ˆ( ) ( )i n i p p nE C E C f f −= L  where ( 1,..., )i m=  

Proof of (a). Fix accident year i . Let , ,{ :1 }i k i jG C j k= ≤ ≤  and ,{ :1 }i i jD C j p= ≤ ≤ . Then for 

1, . 1:k p n= + −K  

 , ,iD i k D i kE C E C=  (using independence and CL3) 

 = 
, 1 ,i i kD G i kE E C

−
 (property of conditional probability since , 1i i nD G −⊆ ) 

 = , 1 1( )
iD i k kE C f− −  (using CL1) 
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 = 1 , 1( )
ik D i kf E C− −  (since f-term is constant). 

Now we apply induction and derive:  
 ,iD i nE C  = 1 , 1( )

in D i nf E C− − =  

 = 1 2 1 , 1...
im i n n D i m if f f E C+ − − − + −  (induction step) 

 = 1 2 1 , 1...m i n n i m if f f C+ − − − + −  since , 1i i m iLTD C + −=  is iD  measurable 

Proof of (b) Follows by (a) and the following property of conditional expectation: .DEE E=  
 
Proof of (c). Follows since:  

(1) , , 1
ˆ ˆˆ

i n i p p nC C f f −= L  (by definition) 

(2) The term k̂f  depends on accident years {1,..., }m k−  and  

The product 1 1
ˆ ˆ
p nf f+ −L  depends on accident years {1,..., 1}i − . Hence ,i pC  and 1

ˆ ˆ
p nf f −L  

depend on different accident years and are independent by CL3.  

(3) The 1
ˆ ˆ{ , , }p nf f −K  are uncorrelated; and ˆ( )k kE f f= . 

 
Theorem 2 (See Mack, 1994 Cas. Forum pp 151.-153; 1999 Astin pp 361, 363 for (a) and (b).) 
Let ,{ : ; 1 }k i jB C j k i m= ≤ ≤ ≤  Assume 1  and  1,..., 1i k m k n+ ≤ + = − . Under the Chain 

Ladder assumptions: 

 (a1) 2
, ,/

kB i k k i kVar F σ β=  where , , ,i k i k i kC wαβ =  

 (a2) 2 2
, 1 , ,( / )

kB i k i k k i kVar C C σ β+ =   

 (a3) 2ˆ ˆ( ) /
kB k k kVar f σ β=  where ,

1

ˆ ˆ
m k

k i k
i

β β
−

=
= ∑  

 (b1) 2 2ˆ( )
kB k kE σ σ=  

 (b2) 2 2ˆ( )k kE σ σ=  

 (c1) 2 2ˆ ˆ( ) ( )j k j kE f f j kσ σ= ≠  

 (c2) 2 2 2 2ˆ ˆ( ) ( )j k j kE f f j kσ σ= <  

 (c3) 2 2ˆ ˆˆ ˆ( / ) ( ) (1/ )k k k kE E Eσ β σ β=  

 (d1) 2 2 2ˆ ˆ( ) /
kB k k k kE f fσ β= +  

 (d2) 2 2 2ˆ ˆ( ) (1/ )k k k kE f E fσ β= +  
 
Note that in (a1) and (a3) that the results are random variables depending on the claims 
amounts ,{ : 1}i kC i k m+ ≤ +  unless 0α = . Note in (a1) to (a3) we can replace 

, k  by    or  Lk i kB G  and in (b1) we can replace   by  k kB L . 

 
Proof (a1). By independence (CL3) and by CL2. 

 
,

2
, , ,/

k i kB i k G i k k i kVar F Var F σ β= =  
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Proof (a2). Follows from (a1). 

Proof (a3). By definition: , ,
1

ˆ ˆ ˆ(1/ )
m k

k k i k i k
i

f Fβ β
−

=
= ∑ . Since the ,

ˆ
i kβ  are kB  measurable we have  

 2 2
, ,

1

ˆ ˆ ˆ( ) (1/ ) ( )
k k

m k

B k k i k B i k
i

Var f Var Fβ β
−

=
= ∑ .  

Using (a1) completes the proof. 
 
Proof (b1). By definition:  

2 2 2
, ,

1

ˆˆ ˆˆ( 1) ( )
m k

k i k i k k k
i

m k F fσ β β
−

=
− − = −∑  

Note that ,  and  i k kβ β are kB measurable. so by (a) 

  2 2 2
, ,

1

ˆˆ ˆˆ( 1) ( ) ( ) ( )
k k k

m k

B k i k B i k k B k
i

m k E E F E fσ β β
−

=
− − = −∑  

Recall 2 2( ) ( ) ( )E X Var X E X= +  for any integrable random variable X. Also  

 2
, ,

ˆ/
kB i k i kVar F σ β=  and ,( )

kB i k kE F f= . 

2ˆ ˆ( ) /
kB k k kVar f σ β=  and ˆ( )

kB k kE f f= . 

Thus 
2 2

2 2 2
,

1 ,

ˆ ˆˆ( 1) ( ) { } { }
ˆ ˆk

m k
k k

B k i k k k k
i i k k

m k E f f
σ σσ β β
β β

−

=
− − = + − + =∑   

2 2 2( ) ( 1)k k km k m kσ σ σ= − − = − − . 

Proof (b2) Follows from (b1) since ( ) ( )
kBE X EE X=  for any random variable X . 

Proof (c1) Follows as in theorem 1A using the results above. Thus for j < k: 

 2 2ˆ ˆˆ ˆ( ) ( )
k kB j k j B kE f f Eσ σ=  since ˆ

jf  is kB  measurable and  

 2 2ˆ ˆˆ ˆ( ) ( )
k kB j k j B kE f E fσ σ=  since ˆ jσ  is kB measurable.  

Proof (c2) Similar to the above. 

Proof (c3) 2 2ˆ ˆˆ ˆ( / ) (1/ ( ))
k kB k k k B kEE E Eσ β β σ=  (since ˆ1/ kβ  is kB  measurable) 

 2ˆ(1/ )k kE β σ=  (since 2ˆ( )
kB kE σ  is the constant 2

kσ ) 

 2ˆ ˆ(1/ ) ( )k kE Eβ σ=  (by b2). 

Proof (d1) Use 2 2 2 2ˆ ˆ ˆ ˆ( ) ( ) ( ) /
k k kB k B k B k k k kE f Var f E f fσ β= + = + . 

Proof (d2). Follows from (d1). 
 
  
Theorem 3A.  (cf. Mack Astin 1999 for the statements of (a) and (b) -- but we have modified a0 
and b0) Let i  be a fixed accident year and let 1p m i= + − so that ,i pC  is the losses to date for 

accident year .i  For 0α =  let 2 2 2
, ,/i k k k i kg f wσ= + .  

Then by the chain ladder assumptions we have the following for 1, , 1k p n= + −K . 



8th Global Conference of Actuaries 
 

 
 

Written for and presented at 8th GCA, Mumbai 10-11 March, 2006 

104 

 (a0) 0α = : 2 2 2 2 2
, 1 , 1 , , ,Var ( ) { / } Var ( )D i k k i k k p i p i k D i kC w f f C g Cσ+ −= ⋅⋅⋅ +  

 (a1) 1α = : 2 2
, 1 , 1 , ,Var ( ) { / } Var ( )D i k k i k k p i p k D i kC w f f C f Cσ+ −= ⋅⋅⋅ +  

 (a2) 2α = : 2 2
, 1 , ,Var ( ) { / } Var ( )D i k k i k k D i kC w f Cσ+ = +  

We have the following formulas for the variance of , .i nC  

 (b0) 0:α =  
1

2 2 2 2 2 2
, , 1 , , 1 , 1Var ( ) { / }

n

D i n i p p k k i k i k i n
k p

C C f f w g gσ
−

− + −
=

= ⋅⋅⋅∑ L   

 (b1) 1:α =  
1

2 2 2
, , 1 , 1 1Var ( ) { / }

n

D i n i p p k k i k k n
k p

C C f f w f fσ
−

− + −
=

= ⋅ ⋅ ⋅∑ L  

 (b2) 2α = : 
1

2 2 2
, , 1 1Var ( ) { / }

n

D i n k i k k n
k p

C w f fσ
−

+ −
=

= ∑ L  

Proof -- notation 
Let ,1 ,{ ,..., }i i pD C C=  be the known values for accident year i  and let ,1 ,{ ,...., }i i kG C C=  where 

1, 1k p n= + −K . Note that D G⊆ . Also note for any random variable 
2 2( ) ( ) Var ( )D D DE X E X X= + .  

Proof (a0) 
 , 1 , 1 , 1Var ( ) Var ( ) Var ( )D i k D G i k D G i kC E C E C+ + += +  = 

 2 2 2
, , ,{ / } ( ) Var ( )k i k D i k k D i kw E C f Cσ= + =  

 2 2 2 2
, , , ,{ / } ( ) ( / )Var ( )k i k D i k k i k k D i kw E C w f Cσ σ= + + =  

 2 2 2 2 2
, 1 , , ,{ / } Var ( )k i k k p i p i k D i kw f f C g Cσ −= +L . 

Proof (a1)  
 , 1 , 1 , 1Var ( ) Var ( ) Var ( )D i k D G i k D G i kC E C E C+ + += + =  

 2 2
, , ,{ / } ( ) Var ( )k i k D i k k D i kw E C f Cσ= + =   

 2 2
, 1 , ,{ / } Var ( )k i k k p i p k D i kw f f C f Cσ −= +L  

Proof (a2) 
 , 1 , 1 , 1Var ( ) Var ( ) Var ( )D i k D G i k D G i kC E C E C+ + += + =  

 2 2 2 2
, , , ,{ / } (1) Var ( ) { / } Var ( )k i k D k D i k k i k k D i kw E f C w f Cσ σ= + = +  

 
Proof (b0)-(b1)-(b2). Follows by induction.. Note that ,i pC  is D-measurable so , ,( )D i p i pE C C=  

and ,Var ( ) 0D i pC = . 

 

Remark. In Astin 1999 Mack gives formulas for the 0α =  case, but he used 2
k̂f  in place of 

2 2 2
, ,

ˆˆ ˆ /i k k k i kg f wσ= + . This was probably deliberate. 
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Theorem 3B. (see Mack 1993, 1994 for most of the proof; we added b2, c3 and d) Let i  be a 

fixed accident year and let 1p m i= + − . Let 2
, ,

ˆ{ ( ) }i D i n i nV E C C= −  and let  

1
2 2 2 2 2 2
, 1 1 1

ˆ ˆ ˆˆ ( / )( )
n

i i p p k k k k n
k p

V C f f f fβ σ
−

− + −
=

= ∑ L L .  

Under the Chain Ladder assumptions ˆ( ) ( ).i iE V E V=  
Proof.  We prove the following steps:  

(a1) 2
, ,

ˆ{ ( ) }i D i n i nV E C C= − = 2 2 2 2 2
, 1 1

ˆ ˆ( )i p p n p nC f f f f− −−L L  

1
2 2
,

n

i p k j k
k p j k

C S S S
−

= <

 
 = +  
∑ ∑  

where  1 1 1
ˆ ˆ ˆ( )( )k p k k k k nS f f f f f f− + −= −L L  and 1p m i= + − . 

(a2) ,i pC  and 2 2
1

ˆ ˆ
p nf f −L  are independent. (where 1p m i= + − )  

(b1) ( ) 0
kB j kE S S =  for j k<  

(b2) ( ) 0j kE S S =  for j k<  

(c1)  2
k ,

1

ˆ ˆ ˆ ˆ( ) /    where   
k

m k

B k k k k i k
g

E f f σ β β β
−

=
− = = ∑  

(c2) 2 2 2 2 2 2
1 1 1

ˆ ˆ ˆ( ) ( / )
kB k p k k k k nE S f f f fσ β− + −= L L  where , , 1k p n= −K  

(c3) 2 2 2 2 2 2
1 1 1

ˆ ˆ ˆ( ) ( / ) ( )k p k k k k nE S E f f f fβ σ− + −= L L  where , , 1k p n= −K  

(d) ˆ( ) ( ).i iE V E V=  
 
Proof (a1). First equality follows by theorem 1B. The second follows from a device introduced by 
Mack. Let 

  1 1
ˆ( )p p p p nS f f f f+ −= − L  

 1 1 1 2 1
ˆ ˆ( )p p p p p nS f f f f f+ + + + −= − L   

 2 1 2 2 3 1
ˆ ˆ ˆ( )p p p p p p nS f f f f f f+ + + + + −= − L , etc.  

Then the kS  equals 2 2 2 2
1 1

ˆ ˆ( )p n p nf f f f− −−L L . 

 

Proof (a2) The term ,i pC  depends on accident year i  and ˆ
pf  and the product 2 2

1
ˆ ˆ
p nf f −L  

depends on accident years {1,..., 1}i − and are independent by CL3.  
  
Proof (b1) Apply the operator 

kBE to j kS S . Since 1 1( )k nf f+ −L  are constants and jS  and 

1
ˆ ˆ
p kf f −L  are kB  measurable they factor out, and: 

  1 1 1
ˆ ˆ ˆ( ) ( ) ( )

k kB j k j p k k n B k kE S S S f f f f E f f− + −= −L L  

Now the above equals zero since ˆ( ) 0
kB k kE f f− = . 
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Proof (b2) Follows from (b1) since ( ) ( )
kBEE X E X=  for every random variable X . 

Proof (c1) ˆ( )
kB k kE f f=  so 2ˆ ˆ ˆ( ) ( ) /

k kB k k B k k kE f f Var f σ β− = = . 

Proof (c2). Follows since 2 2
1

ˆ ˆ
p kf f −L  and 

1

ˆ
m k

k gk gk
g

w Cαβ
−

=
= ∑  are kB  measurable for k p³ . 

Proof (c3) Follows from (c1) 

Proof (d) 
1

2 2
,( ) ( ){ ( ) ( )}

n

i i p k j k
k p j k

E V E C E S E S S
−

= <
= +∑ ∑  (using a2, independence) 

1
2 2 2 2 2 2
, 1 1 1

ˆ ˆ ˆ( ) ( / ) ( )
n

i p p k k k k J
k p

E C E f f f fβ σ
−

− + −
=

= ∑ L L  (using (b) and (c)) 

Note. In the 0α =  case kβ  is constant and the squares 2ˆ{ : 1, 1}jf j m= −K  are uncorrelated 

and 2 2 2 2 2ˆ ˆ ˆ ˆ( ) ( ) Var( ) /k k k k k k kE f E f f f gσ β= + = + = . 
 
THEOREM 4 A. (Cf. Mack Cas Forum 1994 p 153; we have added some details to the proof). 
Let q = 2+m-n be the first accident year that is not fully developed. Under the chain ladder 

ˆmse( , )R R  equals 

 , , , , , ,
ˆ ˆ ˆmse( , ) 2 ( )( )

m

i n i n i n i n g n g n
i q i g

C C C C C C
= <

= + − −∑ ∑   

Proof (cf. Mack 1993 page 200 and cf. Greg Taylor, 2000) 

 2
, ,

ˆˆmse( , ) ( ( ) ( ))
m m

D i n i n
i q i q

R R E E C E C
= =

= −∑ ∑  (by definition) 

2
, , ,

ˆVar ( ) ( )
m m m

D i n D i n i n
i q i q i q

C E C C
= = =

= + −∑ ∑ ∑  (by property of variance; detail 1) 

 2
, , ,

ˆVar( ) ( )
m m m

i n D i n i n
i q i q i q

C E C C
= = =

= + −∑ ∑ ∑  (by detail 2 and the summation theorem) 

 
m

2
, , , , , , ,

ˆ ˆ ˆVar( ) ( ) 2 ( )( )
m

i n D i n i n D i n i n g n g n
i q i q i g

C E C C E C C C C
= = <

= + − + − −∑ ∑ ∑   

 , , , , , ,
1

ˆ ˆ ˆmse( , ) 2 ( )( )
m

i n i n D i n i n g n g n
i i g

C C E C C C C
= <

= + − −∑ ∑  (by theorem 3) 

 
1

, , , , , ,
1

ˆ ˆ ˆmse( , ) 2 ( ) ( )
m m m

i n i n D i n i n g n g n
i q i q g i

C C E C C C C
−

= = = +
= + − −∑ ∑ ∑  

 
Detail 1. This was shown earlier. In general if D  is any set of integrable random variables and 

Ŷ  is D-measurable, then: 2 2ˆ ˆ ˆ( ) { ( ) } Var ( ) Var ( )D D D DE X Y E X Y X Y X− − − = − =  
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Detail 2. If ( ) ( ) ( )D D DE XY E X E Y= , then Var ( ) Var ( ) Var ( )D D DX Y X Y+ = + . But if ,X Y  are 
uncorrelated or independent that does not mean that the conditional expectations are 
uncorrelated or uncorrelated, see Jordan Stoyanov, Counterexamples in Probability, 7.1.3 page 
55.. We need the following “summation theorem”: 
 
Summation Theorem.  

, , , , , , , ,( ) ( ) ( ) ( ) ( ) ( )
g i g iD g k i k D D g k i k D g k D i k D g k D i kE C C E C C E C E C E C E C∨= = =  

where g iD D∨  is the algebraσ −  generated by the functions in   g iD D∪ . 

Proof. We will We will rephrase the above in terms of algebrasσ − .  Let  and g iA A  be the 

algebrasσ −   and g iD D  respectively. generated by  

The first and last equation of (a) follows from CL3 (independence of the rows) and properties of 
contingent expectation. The second equation of (a) follows by showing that the third term has 
the unique properties of the second term -- these are properties (1) and (2.3) below.  
 
We will now prove the following: 
 (1) , ,( ) ( )

g iD g k D i kE C E C  is g iD D∨  measurable. 

(2.1) , , , ,( ) ( ) ( )
g ig n i n D g n D i nV C C E C E C= −  is perpendicular to all products Y Z  where Y  is 

gD measurable and Z is iD  measurable.  

 (2.2) V  is perpendicular to algebraσ −  generated by the union of   and  g iD D . 

 (2.3) V  is a measurable function with respect to g iD D∪  

Proof (1). Property (1) is trivial since ,( ) 
gD g nE C is gD  measurable and ,( )

iD i nE C  is iD  

measurable and hence the product is measurable for any algebraσ −  which contains g iD D∪   

Proof (2.1) Note that , ,{ , ( ), }
gg n D g nC E C Y  are gD measurable and hence pairwise independent 

of the iD  measurable functions , ,{ , ( ), }
ii n D i nC E C Z . Hence 

 , , , ,( ) ( ) ( ( ) ( ) )
g ig n i n D g n D i nE YVZ E Y C C Z E Y E C E C Z= −  = 

 , , , ,( ) ( ) { ( )} { ( ) }
g ig n i n D g n D i nE Y C E C Z E Y E C E E C Z= −  (pairwise independence). 

But , ,( ) { ( )}
gg n D g nE Y C E Y E C=  and , ,( ) { ( ) }

ii n D i nE C Z E E C Z=  

by definition of the projection operators. Therefore V Y^ Z . 
 
Proof (2.2).  Let  and g iA A  be the algebrasσ −  generated by the functions in  and g iD D  

respectively. Item (2.1) implies that V is perpendicular to all the indicators in  g i∪A A . 

Perpendicularity preserves unions, intersections and limits. Hence V is perpendicular to the 
algebraσ −  generated by  g i∪A A  

 
Proof (2.3). This follows since the minimumσ algebra which contains g iD D∪  contains V . 

Note. For a proof similar to the above see J.L. Doob Measure theory, page 186, proof of (k). 
and page 23 definition of independent algebrasσ −  
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The notation g iD D∨  is defined in Billingsley, Probability and Measure (3rd ed ) at 455.  

 
Theorem 4B. (See Mack for most of the proof; we added some details to show ˆ( ) ( )E Z E Z= ) 
Assume the chain ladder hypothesis; with q = 2+m-n the first accident year that is not fully 
developed. 

Let 
1

, , , ,
1

ˆ ˆ2 ( ) ( )
m m

D i n i n D g n g n
i q g i

Z E C C E C C
−

= = +
= − −∑ ∑ . 

Let 
m 1 1

2 2 2 2 2
, 1 1 1 1 1 , 1

1 1

ˆ ˆ ˆ ˆˆ 2 ( / )
n m

i m i m i k k k k n g m i
i q k m i g i

Z C f f f f Cσ β
− −

+ − + − − + − + −
= = + − = +

= ∑ ∑ ∑L L . 

Then ˆ( ) ( )E Z E Z= . 
 
Proof.  For fixed  and i g  let us examine , , , ,

ˆ ˆ0 ( ) ( )D i n i n D g n g nX E C C E C C= − − . 

 We find for i g<  

 (1) , , 1 1 1 1( )( )D g n g m g m g m i m i nE C C f f f f+ − + − − + − −= L L  

 (2) , , 1 1 1 1
ˆ ˆ ˆ ˆˆ ( )( )g n g m g m g m i m i nC C f f f f+ − + − − + − −= L L  

 (3) , , 1 1 1( )D i n i m i m i nE C C f f+ − + − −= L  

 (4) , , 1 1 1
ˆ ˆˆ ( )i n i m i m i nC C f f+ − + − −= L . 

 
Let 1 1 2 1 1( ); ( )m g m i m i nh f f h f f+ − − + − −= =L L  

1 1 2 1 1
ˆ ˆ ˆ ˆ ˆ ˆ( ); ( )m g m i m i nh f f h f f+ − − + − −= =L L . 

 
Then , , 1 2 1 2 , 1

ˆ ˆˆ( ) ( )D g n g n g m gE C C h h h h C + −− = −  and , , 2 2 , 1
ˆˆ( ) ( )D i n i n i m iE C C h h C + −− = −  

 

Thus 1 2 1 2 , 1 2 2 , 1
ˆ ˆ ˆ0 { } { }g m g i m iX h h h h C h h C+ − + −= − − =  

  1 2 2 , 1 2 2 , 1 1 1 2 , 1 2 2 , 1
ˆ ˆ ˆ ˆ ˆ{ } { } ( ) { }g m g i m i g m g i m ih h h C h h C h h h C h h C+ − + − + − + −= − − + − − . 

 
The expectation of the second term is zero, for apply 

1 1n m iB BEE E
− + −

L  to the second term and 

note that 
1 1 2 2̂( ) 0

m i nB BE E h h
+ − −

− =L ; see detail 1.  

Let 1X  be the first term:  2
1 , 1 2 2 , 1
ˆ ˆ1 { }g m g i m iX h C h h C+ − + −= − . Since 1 , 1 , 1

ˆ ˆ
g m g g m ih C C+ − + −=  we 

have 
2

, 1 2 2 , 1
ˆˆ1 { }g m i i m iX C h h C+ − + −= − .  

 
Note that the three factors of 1X  depend on different accident years --- ,{1,..., 1},g i i−  -- and 
hence are independent.  
  

We proceed as in the proof of theorem 3 to evaluate the expectation of 2
2 2̂{ }h h− . We find:  



8th Global Conference of Actuaries 
 

 
 

Written for and presented at 8th GCA, Mumbai 10-11 March, 2006 

109 

 2
2 2̂{ }h h− = 2 2

1 1 1 1
ˆ ˆ( ) ( )m i n m i nf f f f+ − − + − −− =L L   

 
1

2

1

( )
n

k j k
k m i j k

S S S
−

= + − <
= +∑ ∑ , where 1 1 1

ˆ ˆ ˆ( )( )k p k k k k nS f f f f f f− + −= −L L  

 
Now ( ) 0 ( )

kB j k j kE S S E S S= =  and  

2 2ˆ ˆ( ) /
kB k k k kE f f σ β− =  and 2 2 2ˆ ˆ ˆ( ) ( ) ( / )

kk k B k k k kE f f EE f f E σ β− = − =  

Thus 
2 2 2 2 2 2

1 1 1 1
ˆ ˆ ˆ( ) ( / )k m i k k k k nE S f f f fσ β+ − − + −= L L  for 1 ,...., 1k m i n= + − − . 

 

Thus 2
, 1 , 1 1 2

ˆ ˆˆ( 1) ( ) ( ) {( ) }g m i i m iE X E C E C E h h+ − + −= − =  

1
2 2 2 2 2

, 1 , 1 1 1 1 1
1

ˆ ˆˆ ˆ( ) ( ) ( / )( )
n

g m i i m i m i k k k k n
k m i

E C E C E f f f fβ σ
−

+ − + − + − − + −
= + −

= ∑ L L . 

By taking sums we find ˆ( ) ( )E Z E Z=  as stated in the theorem. 
 

Detail 1. Let 1 1 2 , 1 , 1
ˆ( ) g m g i m iX h h h C C+ − + −= −  We will show 2 2̂( { }) 0.E X h h− =  

The proof uses the following steps: 
(1) 

1 1 2 2 1 1
ˆ( ) ( )

m i nB B m i nE E h h f f
+ − − + − −= =L L  

(2) 
1 1 2 2̂( ) 0

m i nB BE E h h
+ − −

− =L  

(3) 
1 1 2 2̂( { }) 0

m i nB BE E X h h
+ − −

− =L  

(4) 2 2̂( { }) 0.E X h h− =  

Proof (1). Recall 2 1 1
ˆ ˆ ˆ( )m i nh f f+ − −= L . Since 1 2

ˆ ˆ( )m i nf f+ − −L  is 1nB −  measurable we find 

 
1 11 1 1 2 1 1 2 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) .
n nB m i n m i n B n m i n nE f f f f E f f f f

− −+ − − + − − − + − − −= =L L L   

Then (1) follows by induction. 
 
Proof (2) Follows by (1). 
 
Proof (3) Follows since X is measurable with respect to 

1 1
; ;

m i nB BE E
+ − −

L  so  

 
1 1 1 12 2 2 2

ˆ ˆ( { }) { } 0.
m i n m i nB B B BE E X h h X E E h h

+ − − + − −
− = − =L L  

 
Proof (4) Follows from (4) since 

1 1
( ) ( )

m i nB BEE E Y E Y
+ − −

=L  for every random variable .Y  
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S3.2. Formulas for the Mean Square Errors  

In the above theorems we computed 2
, , ,

ˆ( ), { ( ) }i D i n i D i n i nU Var C V E C C= = − , 

, ,
1

ˆ( , )
m

i n i n
i

Y mse C C
=

= ∑  and 
1

, , , ,
1

ˆ ˆ2 ( ) ( )
m m

i n i n g n g n
i q g i

Z C C C C
−

= = +
= − −∑ ∑ . We also computed some 

unbiased predictors ˆ ˆ ˆ, ,iV Y Z  as shown below.  
 
Summary of the formulas from theorems 3 and 4. 

 (a0) 0:α =  
1

2 2 2 2 2 2
, , 1 , , 1 , 1Var { / }

n

i D i n i p p k k i k i k i n
k p

U C C f f w g gσ
−

− + −
=

= = ⋅⋅⋅∑ L   

(a1) 1:α =  
1

2 2 2
, , 1 , 1 1Var { / }

n

i D i n i p p k k i k k n
k p

U C C f f w f fσ
−

− + −
=

= = ⋅⋅⋅∑ L  

(a2) 2α = : 
1

2 2 2
, , 1 1Var { / }

n

i D i n k i k k n
k p

U C w f fσ
−

+ −
=

= = ∑ L  

(b) 
1

2 2 2 2 2 2 2
, , , 1 1 1

ˆ ˆˆ ˆˆ{ ( ) } ( / )
n

D i n i n i i p p k k k k n
k p

V E C C V C f f f fσ β
−

− + −
=

= − ≈ = ∑ L L  

(c) , ,
ˆ ˆ ˆ( , )

m m

i n i n i i
i q i q

Y mseC C Y U V
= =

= ≈ = +∑ ∑  

(d) 
1

, , , ,
1

ˆ ˆ ˆ2 ( ) ( )
m m

D i n i n D g n g n
i q g i

Z E C C E C C Z
−

= = +
= − − ≈ =∑ ∑   

m 1
2 2 2 2 2

, 1 m 1 1 1 1 , 1
1 1 1

ˆ ˆ ˆ ˆ2 ( / )
n m

i m i i k k k k n g m i
i k m i g i

C f f f f Cσ β
−

+ − + − − + − + −
= = + − = +

= ∑ ∑ ∑L L  

 

With the predictors ˆ ˆ ˆ, ,iV Y Z we are not done because they involve unknown parameters like 
2 2, ,k k kf f σ . Therefore to compute predictors of the mean square error we need to replace these 

parameters by estimators. We give formulas for (1) Mack predictors and in (2) for what we call 
the “L-predictors.”  
 

(1) Mack’s Predictors. These predictors are based on replacing 2 2, ,k k kf fσ  by 2 2ˆ ˆˆ, ,k k kf fσ  and 
2
,i kg  by 2

k̂f . Mack’s predictors have an advantage in that the mean square error can be 

expressed in a simple formula in terms of the estimated claims. 
 
(2) L-Predictors. These predictors are based on replacing the parameters 

2 2 2 2
,

ˆˆ, , , , ( / )k k i k k k kf g f Eσ σ β  by their unbiased estimators. In the 0α =  case the L-predictors 

produce an unbiased estimator of the mean square error. We call them L-Predictors because 
they are based on a property of maximum likelihood estimators.  
 
The substitutions are shown in the chart below. 
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 Parameter L-Estimator Mack’s Estimator 
1 kf  k̂f  k̂f  
2 2

kσ  2ˆ kσ  2ˆ kσ  

3 2 2 2
, ,/i k k k i kg f wσ= +  2 2 2

, ,
ˆˆ ˆ /i k k k i kg h wσ= +  2

k̂f  

4 2
kf  2 2 2ˆ ˆ ˆˆ /k k k kh f σ β= −  2

k̂f  

5 2 ˆ( / )k kE σ β  2 ˆˆ /k kσ β  2 ˆˆ /k kσ β  
 
One cannot “prove” that either the L-predictors or the Mack predictors are “correct”-- they are 
estimates. If 0α =  the L-predictor formulas are unbiased but we have not investigated the bias 
in the other cases.  
 
Mack Predictors: 

a0. 0α =  
1

2 2 2
, , ,

ˆˆ ˆVar /{ }
n

D i n i i n k k i k
k p

C U C f wσ
−

=
= ≈ ∑  

a1. 1α =  
1

2 2 2
, , , ,

ˆˆ ˆˆVar /{ }
n

D i n i i n k k i k i k
k p

C U C f C wσ
−

=
= ≈ ∑  

a2. 2α =  
1

2 2 2 2
, , , ,

ˆˆ ˆˆVar /{ }
n

D i n i i n k k i k i k
k p

C U C f C wσ
−

=
= ≈ ∑  

b. 
1

2 2 2 2
, , ,

ˆˆ ˆ ˆˆ ˆ{ ( ) } /{ }
n

D i n i n i i n k k k
k p

E C C V C fσ β
−

=
− ≈ ≈ ∑  

c. , ,
ˆ ˆ ˆ( , )

m m

i n i n i i
i q i q

mse C C Y U V
= =

≈ = +∑ ∑  

d. 
1

, , , ,
1

ˆ ˆ2 ( ) ( )
m m

i n i n g n g n
i q g i

Z C C C C
−

= = +
= − −∑ ∑  

1

,
ˆˆ 2 3

m

i i n i i
i q

Z C Fact Fact
−

=
≈ ≈ ∑  

where ,
1

ˆ2
m

i g n
g i

Fact C
= +

= ∑  and 
21

2
1

ˆ2
3 ˆˆ

n
k

i
k m i k k

Fact
f

σ
β

−

= + −
= ∑  

 where , , , ,
1

ˆ ˆ ˆ  and    and  {0,1,2}
m k

k i k i k i k i k
i

w Cαβ β β α
−

=
= = ∈∑   

 
Derivation of Mack Formulas from theorem 3 and 4. We use , ,

ˆ ˆ ˆ ˆ/p k i k i pf f C C=L  and 

1 , ,
ˆ ˆ ˆ ˆ/p n i n i pf f C C− =L .  We give more details for ˆ

iZ  formula. Let , ,i i m i i i pFact1A C C+ −= = ; 

, 1
1

ˆ
m

i g m i
g i

Fact2A C + −
= +

= ∑  and let 
1

2 2 2 2 2
m 1 1 1 1

1

ˆ ˆ ˆ3 2 ( / )
n

i i k k k k n
k m i

Fact A f f f fσ β
−

+ − − + −
= + −

= ∑ L L . 
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Then , , ,
ˆ ˆ( / )i i n i p i nFact1A C C C=  and , ,

ˆ( / )i i n i p iFact2A C C Fact2=  while 

 
21

2 2 2 2
1 , ,2

1

ˆ2ˆ ˆ ˆ3 ( ) 3 ( / )
ˆˆ

n
k

i p n i i n i p
k m i k k

Fact A f f FACT C C
f

σ
β

−

−
= + −

= =∑L . 

 
L Predictors 

a0. 0α =  
1

2 2 2 2 2 2
, , 1 , , 1 , 1

ˆ ˆ ˆ ˆ ˆVar ( ) { / }
n

D i n i i p p k k i k i k i n
k p

C U C h h w g gσ
−

− + −
=

= ≈ ⋅⋅⋅∑ L  

a1. 1α =  
1

2 2 2
, , 1 , 1 1

ˆ ˆ ˆ ˆˆVar ( ) { / }
n

D i n i i p p k k i k k n
k p

C U C f f w h hσ
−

− + −
=

= ≈ ⋅ ⋅ ⋅∑ L  

a2. 2α =  
1

2 2 2
, , 1 1

ˆ ˆˆVar ( ) { / }
n

D i n i k i k k n
k p

C U w h hσ
−

+ −
=

= ≈ ∑ L  

b. 2
, ,

ˆ{ ( ) }D i n i nE C C−  
1

2 2 2 2 2
1 1 1

ˆ ˆ ˆ ˆˆˆ ˆ( / )
n

i p k k k k n
k p

V f f h hσ β
−

− + −
=

≈ ≈ ∑ L L  

c. 
m

, ,
ˆ ˆ ˆ( , )

m

i n i n i i
i q i q

mse C C Y U V
= =

≈ = +∑ ∑  where 2q m n= + − . 

d. 2 2 2 2 2
, 1 1 1 1 1 , 1

1 1

ˆ ˆ ˆ ˆˆ ˆˆ ˆ( / )
m m

i m i m i k k k k n g m i
i g i

Z C f f h h Cσ β+ − + − − + − + −
= = +

≈ ∑ ∑L L  

 

Remark. To derive formulas for the parameters 2 2, ,k k kf fσ  an expert suggested we should 
examine some properties of the maximum likelihood estimators The following two properties 
were considered relevant. 

(1) Invariance Principle: if θ̂  is the maximum likelihood estimator of parameter θ  and if τ  the is 

a one-one function, then ˆ( )τ ϑ  is the maximum likelihood estimator of ( )τ θ . 

(2) In general ˆ ˆ( ( )) ( )E Eτ θ τ θ≠  
See Kendall, the Advanced Theory Of Statistics, vol2 (3rd ed.1973) page 44.  
 
We considered a specific example, from DeGroot, Probability and Statistics, (2nd 3d. 1986) page 
349. Let X  be a normal random variable with unknown mean µ  and variance ν , and let 

ˆˆ  and µ ν  be the maximum likelihood estimators Then 

(1) The maximum likelihood estimate of ˆ  is  ν ν  and the maximum likelihood estimate of 
2 2ˆ  is  µ µ  

(2) 2 2ˆ ˆ( ) ( )E Eµ µ≠  and in fact the maximum likelihood estimator of 2( )E X  is 2 ˆµ̂ ν+   
 
The Mack estimator was suggested by (1) and the L-estimator by (2). In addition the L-estimator 
is unbiased in the Simple Average case.  
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S3.2. L-Predictor is unbiased in the Simple Average Case 
 
For the 0α =  simple average case the L-predictor is unbiased. We have the following theorem. 
 
Theorem 5. Let 2q m n= + −  be the first accident year which is not fully developed. In the 

0α =  simple average case we can produce an unbiased predictor of 

, ,
ˆˆ( , ) ( , )

m m

i n i n
i q i q

mse R R mse C C
= =

= ∑ ∑  by replacing 2 2 2
,, , ,k k i k kf f g σ  by their unbiased estimators -- 

2 2 2
,

ˆ ˆ ˆ ˆ, , ,k k k i kf h gσ . 

Proof. We computed ,( )i D i nU Var C=  and we showed that ˆ( ) ( )i iE V E V=  and ˆ( ) ( )i iE Z E Z=  by 

theorems 3 and 4. We need to show that the substitution produces an unbiased estimate for 

i,   and  Zi iU V  in the 0α =  case. The substitution produces an unbiased predictor of iZ  since 

for 0α =  ˆ
kβ  is constant and the squares 2

k̂f  are uncorrelated. Thus  

 2 2 2 2
1 1 1 1

ˆ ˆ ˆ ˆˆ ˆ( / ) ( ) ( ) / )m i k k m i k kE f f E f E fβ β+ − − + − −=L L  
The rest is similar.  
 
 
S3.3. Numerical Calculations 

In most cases 2ˆkσ  is small relative to 2
k̂f  and hence 2 2 2

,
ˆ ˆˆk i k kh g f≈ ≈  and the L-predictors and the 

Mack predictors give almost the same results. We will illustrate the calculations by an example. 
We assume all the weights , 1.i kw =   

CUMULATIVE CLAIMS ,i kC  

acc yr 12 mo 24 mo 36 mo 48 mo 60 mo 
i=1 100 200 200 200 300 
i=2 100 100 200 300 300 
i=3 100 200 200 250  
i=4 100 100 200   
i=5 100 150    
i=6 100     
 
 
LINK RATIOS , , 1 ,/i k i k i kF C C+=  

 24/12 mo 36/24 mo 48/36 mo 60/48 mo 
 k=1 k=2 k=3 k=4 
i=1 2 1 1 1.5 
i=2 1 2 1.5 1 
i=3 2 1 1.25  
i=4 1 2   
i=5 1.5    
ave link ratios     
f (alpha=0) 1.500 1.500 1.250 1.250 
f (alpha=1) 1.500 1.333 1.250 1.200 
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f (alpha=2) 1.500 1.200 1.250 1.154 
 

Projected Claims ,
ˆ
i kC  using Simple Average Link Ratios (alpha=0) 

C[i,j] j=1 j=2 j=3 j=4 j=5 
acc yr 12 mo 24 mo 36 mo 48 mo 60 mo 
i=1 100 200 200 200 300 
i=2 100 100 200 300 300 
i=3 100 200 200 250 312.50 
i=4 100 100 200 250.00 312.50 
i=5 100 150 225.00 281.25 351.56 
i=6 100 150.00 225.00 281.25 351.56 
simple ave. link ratios 1.5 1.5 1.25 1.25  
sum proj. values 0.00 150.00 450.00 812.50 1328.13 
Note 281.25 = 225.00*1.25 
 

Projected Claims ,
ˆ
i kC  using Weighted Average Link Ratios (alpha=1) 

C[i,j] j=1 j=2 j=3 j=4 j=5 
 12 mo 24 mo 36 mo 48 mo 60 mo 
i=1 100 200 200 200 300 
i=2 100 100 200 300 300 
i=3 100 200 200 250 300.00 
i=4 100 100 200 250.00 300.00 
i=5 100 150 200.00 250.00 300.00 
i=6 100 150.00 200.00 250.00 300.00 
wtd ave link ratios 1.500 1.333 1.250 1.200  
sum proj. values 0.00 150.00 400.00 750.00 1200.00 
Note 150.00 = 100*1.500 
 

Projected Claims ,
ˆ
i kC  using Least Squares Link Ratios (alpha=2) 

C[i,j] J=1 j=2 j=3 j=4 j=5 
 12 mo 24 mo 36 mo 48 mo 60 mo 
i=1 100 180 270 350 385 
i=2 110 200 300 385 425 
i=3 100 200 200 250 288.46 
i=4 100 100 200 250.00 288.46 
i=5 100 150 180.00 225.00 259.62 
i=6 100 150.00 180.00 225.00 259.62 
Least square link ratios 1.500 1.200 1.250 1.154  
sum proj. values 0 150.00 360.00 700.00 1096.15 
Note 259.62=225*1.154 
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The following chart shows the projected Ultimate under the three methods, together with Losses 
To Date and the Loss Reserve, which is the excess of the projected ultimate over the Losses To 
Date. 
 
 Ultimate 

Claims 
Ultimate 
Claims 

Ultimate 
Claims 

Losses 
To Date 

Reserve Reserve Reserve 

Acc yr. alpha=0 alpha=1 alpha=2 LTD alpha=0 alpha=1 alpha=2 
i=3 312.50 300.00 288.46 250 62.50 50.00 38.46 
i=4 312.50 300.00 288.46 200 112.50 100.00 88.46 
i=5 351.56 300.00 259.62 150 201.56 150.00 109.62 
i=6 351.56 300.00 259.62 100 251.56 200.00 159.62 
Total 1328.13 1200.00 1096.15 700.00 628.13 500.00 396.15 
 

Next we show some of the constants used to compute the standard error. Note that the 2ˆkσ  and 

, ,
1

ˆ
m k

k g k g k
g

w Cαβ
−

=
= ∑  are denominated in “$” for the alpha=1 case and denominated in “$-squared” 

for the alpha=2 case. 
 
  k=1 k=2 k=3 k=4 
Alpha=0 Fhat 1.5 1.5 1.25 1.25 
 Beta 5 4 3 2 
 sigma-sq 0.250 0.370 0.063 0.130 
 sigma-sq/beta 0.050 0.093 0.021 0.065 
      
Alpha=1 Fhat 1.500 1.333 1.250 1.200 
 beta ($) 500 600 600 500 
 sigma-sq ($) 25.0 44.4 12.5 30.0 
 sigma-sq/beta 0.050 0.074 0.021 0.060 
      
Alpha=2 Fhat 1.5 1.2 1.25 1.154 
 beta ($$) 50,000 100,000 120,000 130,000 
 sigma-sq ($$) 2,500 5,333 2,500 6,923 
 sigma-sq/beta 0.050 0.053 0.021 0.053 
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The following chart shows 2 2 2
,

ˆ ˆˆ ;  ;   i k k kg h f . In the Mack predictors the value 2
k̂f  is used for  

2 2 2 2
,

ˆ ˆˆ ;  ;   ;   and  i k k k kg h f f . 

 
  k=1 k=2 k=3 k=4 
Alpha=0 2

k̂f  2.250 2.250 1.563 1.563 

 2ˆ
kh  2.200 2.157 1.542 1.498 

 2
,ˆi kg  2.450 2.528 1.604 1.628 

      
Alpha=1 2

k̂f  2.250 1.778 1.563 1.440 

 2ˆ
kh  2.200 1.704 1.542 1.380 

      
Alpha=2 2

k̂f  2.250 1.440 1.563 1.331 

 2ˆ
kh  2.200 1.387 1.542 1.278 

 
 
The following chart shows the computation of the standard error plus some intermediate values, 
for both the L-predictors and the Mack-predictors for 0,1,2α = . 
 
Mean Square Error -  
L-Predictor, Alpha=0 (Simple Average Link Ratios) 
acc yr U[i] Vhat [i] Mse(C,Chat) Zhat Total mse Sqrt 
i=3 8,125.00 4,062.50 12,187.50 26,406.25 38,593.75 196.45 
i=4 12,085.42 5,310.42 17,395.83 23,896.88 41,292.71 203.21 
i=5 36,422.67 11,530.6

7 
47,953.34 23,061.35 71,014.69 266.49 

i=6 52,111.96 14,021.0
2 

66,132.98 0.00 66,132.98 257.16 

Overall 108,745.0
5 

34,924.6
1 

143,669.66 73,364.47 217,034.13 465.87 
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Mean Square Error -  
Mack Predictor, Alpha=0 (Simple Average Link Ratios) 
acc yr U[i] Vhat [i] mse(C,Chat) Zhat Total mse Sqrt 
i=3 8,125.00 4,062.50 12,187.50 26,406.2

5 
38,593.75 196.4

5 
i=4 12,031.25 5,364.58 17,395.83 24,140.6

3 
41,536.46 203.8

0 
i=5 35,572.10 11,875.81 47,447.92 23,751.6

3 
71,199.54 266.8

3 
i=6 49,305.01 14,622.40 63,927.41 0.00 63,927.41 252.8

4 
Overall 105,033.37 35,925.29 140,958.66 74,298.5

0 
215,257.1
6 

463.9
6 

 
 
Mean Square Error -  
L-Predictor, Alpha=1 (Weighted Average Link Ratios) 
acc yr U[i] Vhat [i] mse(C,Chat) Zhat Total mse Sqrt 
i=3 7,500.00 3,750.00 11,250.00 22,500.00 33,750.00 183.71 
i=4 10,950.00 4,900.00 15,850.00 19,600.00 35,450.00 188.28 
i=5 25,133.33 8,445.83 33,579.17 16,891.67 50,470.83 224.66 
i=6 34,194.91 10,258.15 44,453.06 0.00 44,453.06 210.84 
Overall 77,778.24 27,353.98 105,132.22 58,991.67 164,123.89 405.12 
 
 
Mean Square Error -  
Mack Predictor, Alpha=1 (Weighted Average Link Ratios) 
acc yr U[i] Vhat [i] mse(C,Chat) Zhat Total mse Sqrt 
i=3 7,500.00 3,750.00 11,250.00 22,500.00 33,750.00 183.71 
i=4 11,100.00 4,950.00 16,050.00 19,800.00 35,850.00 189.34 
i=5 26,100.00 8,700.00 34,800.00 17,400.00 52,200.00 228.47 
i=6 36,100.00 10,700.00 46,800.00 0.00 46,800.00 216.33 
Overall 80,800.00 28,100.00 108,900.00 59,700.00 168,600.00 410.61 
 
 
Mean Square Error -  
L-Predictor, Alpha=2 (Lease Squares Link Factors) 
acc yr U[i] Vhat [i] mse(C,Chat) Zhat Total mse Sqrt 
i=3 6,923.08 3,328.40 10,251.48 18,639.05 28,890.53 169.97 
i=4 10,118.34 4,393.49 14,511.83 15,816.57 30,328.40 174.15 
i=5 20,627.22 5,923.22 26,550.44 11,846.45 38,396.89 195.95 
i=6 27,457.99 7,289.38 34,747.37 0.00 34,747.37 186.41 
Overall 65,126.63 20,934.50 86,061.12 46,302.07 132,363.20 363.82 
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Mean Square Error - 
Mack Predictor, Alpha=2 (Least Squares link factors) 
acc yr U[i] Vhat [i] Mse(C,Chat) Zhat Total mse Sqrt 
i=3 6,923.08 3,328.40 10,251.48 18,639.05 28,890.53 169.97 
i=4 10,251.48 4,437.87 14,689.35 15,976.33 30,665.68 175.12 
i=5 21,346.15 6,090.98 27,437.13 12,181.95 39,619.08 199.05 
i=6 28,835.06 7,588.76 36,423.82 0.00 36,423.82 190.85 
Overall 67,355.77 21,446.01 88,801.78 46,797.34 135,599.11 368.24 
 
APPENDIX A.  Repair of Greg Taylor’s Proof. 
 
Greg Taylor was troubled by the potential bias in the Mack predictor and investigated the 

relationship between link factors ˆ ˆ and  for  j<kj kf f . See Loss Reserving, (Kluwer, 2000) pages 

210-218. Taylor indicated that the following Proposition proved the link factors were 
independent: 
 
Proposition. (Greg Taylor’s result; our proof). Under the Chain Ladder CL1-CL3 and for 

{0,1,2}α∈  ˆ ˆ ˆ( | ) ( )  for  .k j kE f f E f j k= <  

Proof. Recall ,{ :1 ; 1 }k i rL C i m k r k= ≤ ≤ − ≤ ≤ . This proof uses an independence property of 

conditional expectation to replace ˆ{ }  by  k j kL f L∪ . The variable ˆ
jf  is computed using 

,{ :1 ; , 1}i rC i m j r j j≤ ≤ − = +  but the ,{ : ; , 1}i rC m k i m j r j j− ≤ < − = +   

are not needed to compute k̂f . Thus 

   ˆ ˆ ˆ{ }
ˆ ˆ( ) ( ) 

j j k j
k kf f L fE f E E f∪=  (Property conditional expectation) 

  ˆ
ˆ( ) 

kj
L kfE E f=  (Using independence of accident rows) 

 But ˆ( )
kL k kE f f=  by a prior theorem, and kf  is a constant. Thus 

  ˆ ˆ
ˆ ˆ ˆ( ) ( ) ( )

kj j
k L k k kf fE f E E f f E f= = =   

 

Remark. The above proposition, however, does not prove ˆ ˆ and k jf f  are independent. 

Stoyanov, Counterexamples in Probability, page 54, gives an example where ( | ) ( )E X Y E X=  

but  and X Y are not independent. Thus from the above Proposition we cannot conclude 
ˆ ˆ{ } and { }k jf f  are independent.  In fact we have previously shown that for fixed accident year i  

that ,  i kF cannot be independent of ,1 ,1 , 1{ , , , }i i i kC F F −K  when 1 or 2α = . Using the same 

technique we prove the following.  
 
Proposition. Assume the chain ladder hypothesis CL1-CL3 and 1 or 2α = . Then 

,
ˆ  and { :1 ; 1 }k k i jf L C i m k j k= ≤ ≤ − ≤ ≤  cannot be independent.  
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Proof . If ˆ and  k kL f  are independent, then 2ˆ and  k kL f  are independent and then 2ˆ( | )k kE f L  is 

a constant. But 2ˆ( | )k kE f L  = 2 2 2ˆ ˆ ˆ( | ) ( | ) /k k k k k kVar f L E f L fσ β+ = +  (by prior theorems). 

If 1 or 2α =  then , ,
1

ˆ
m k

k i k i k
i

w Cαβ
−

=
= ∑  is not constant. 

 
SECTION 4- PETERSON’S METHOD. 
In his text Loss Reserving (Ernst & Whinney, 1981) Timothy Peterson discussed a simple 
method of investigating variability of the loss reserves -- that is computing the reserves using the 
highest and the lowest link factors -- at each age of development. This method is obviously 
flawed -- for example tables with many rows and columns will produce very large variations as 
compared to tables with only a few rows and columns. As Peterson noted on page 186-187: 
 
In many situations, two projections comparing reserves using high and low [link] factors could be 
extremely misleading, and cause unwarranted concern as to the level of existing uncertainty, as 
will be illustrated shortly. 
 
Nevertheless, projections using high and low factors can be useful indicators of the variability in 
the historical loss data. 
 
In this note we will compute the variability of loss data using a variation of Peterson’s technique. 
Instead of using the highest and lowest link factors we use the “average” link factors plus and 
minus one-two standard deviations, where the standard deviation is computed using the 
assumptions of the chain ladder hypothesis.  
 
The variability of the projected ultimate claims using the link factors plus (or minus) one standard 
deviation was about 70% of the total computed by the Mack or the L-predictors of the mean 
square error. The minimum-maximum link ratio method is much easier to program than the Mack 
or L-predictors. The data below is from Table 7-4 of the Peterson text. (We show rounded values 
but the actual computations used the exact data.) 
 
Cumulative Paid Claims ($000) 
(From Table 7.4 in Peterson, Loss Reserving) 
 k=1 K=2 K=3 K=4 k=5 k=6 k=7 
Acc yr. 12 mo 24 mo 36 mo 48 mo 60 mo 72 mo 84 mo 
I=1 1,491 5,015 7,198 8,678 9,578 10,094 10,181 
I=2 1,902 6,210 8,912 10,624 11,720 12,410 12,597 
I=3 2,053 7,090 10,248 12,296 13,538 14,414 0 
I=4 2,338 8,216 11,975 14,442 15,833 0 0 
I=5 2,861 9,730 14,182 17,361 0 0 0 
I=6 3,123 10,851 15,404 0 0 0 0 
I=7 3,756 11,959 0 0 0 0 0 
I=8 4,181 0 0 0 0 0 0 
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LINK RATIOS - F[i; k] 
 k=1 k=2 K=3 k=4 k=5 k=6 
 24/12 mo 36/24 mo 48/36 mo 60/48 mo 72/60 84/72 
I=1 3.3631 1.4353 1.2056 1.1037 1.0538 1.0086 
I=2 3.2656 1.4352 1.1921 1.1031 1.0589 1.0151 
I=3 3.4542 1.4454 1.1998 1.1010 1.0647  
I=4 3.5148 1.4575 1.2060 1.0963   
I=5 3.4006 1.4575 1.2242    
I=6 3.4742 1.4195     
I=7 3.1835      
f-simple 
ave 

3.3794 1.4418 1.2055 1.1011 1.0591 1.0119 

f-wtd ave 3.3708 1.4416 1.2073 1.1006 1.0598 1.0122 
f-least 
squares 

3.3571 1.4410 1.2093 1.1000 1.0603 1.0125 

*Note 3.1835 = 11959 / 3756 
 
Various constants, using alpha = 1 -- weighted average link ratios 
 k=1 K=2 k=3 k=4 k=5 k=6 
fhat, wtd ave 3.3708 1.4416 1.2073 1.1006 1.0598 1.0122 
fhat, min 3.1835 1.4195 1.1921 1.0963 1.0538 1.0086 
fhat, max 3.5148 1.4575 1.2242 1.1037 1.0647 1.0151 
fhat, variance 3.9383E-

03 
5.7300E-
05 

3.1952E-
05 

2.1905E-
06 

6.6760E-
06 

6.2981E-
06 

fhat, std dev .0627 .007569 .056526 .001480 .002583 .002509 
fhat wtd ave - 
std dev 

3.3081 1.4341 1.2016 1.0991 1.0572 1.0097 

fhat wtd ave + 
std dev 

3.4336 1.4492 1.2130 1.1020 1.0623 1.0147 

 

Recall that the conditional variance is: 2ˆ ˆˆ( | ) /k k k kVar f L σ β=  where , ,
1

ˆ
m k

k i k i k
i

w Cβ
−

=
= ∑  and 

where ,{ :1 ; 1 }k i jL C i m k j k= ≤ ≤ − ≤ ≤ . The standard deviation (std dev) is the square root of 

the conditional variance. 
 



8th Global Conference of Actuaries 
 

 
 

Written for and presented at 8th GCA, Mumbai 10-11 March, 2006 

121 

Projected Using wtd average 
 K=1 K=2 k=3 k=4 k=5 k=6 k=7 
 12 mo 24 mo 36 mo 48 mo 60 mo 72 mo 84 mo 
I=1 1,491 5,015 7,198 8,678 9,578 10,094 10,181 
I=2 1,902 6,210 8,912 10,624 11,720 12,410 12,597 
I=3 2,053 7,090 10,248 12,296 13,538 14,414 14,589.9 
I=4 2,338 8,216 11,975 14,442 15,833 16,779.1 16,983.7 
I=5 2,861 9,730 14,182 17,361 19,107.0 20,248.7 20,495.6 
I=6 3,123 10,851 15,404 18,596.9 20,466.9 21,689.8 21,954.2 
I=7 3,756 11,959 17,240.1 20,813.9 22,906.8 24,275.5 24,571.5 
I=8 4,181 14,095.0 20,320.1 24,532.4 26,999.2 28,612.4 28,961.3 
fhat, wtd ave 3.3708 1.4416 1.2073 1.1006 1.0598 1.0122  
Sum proj 
values 

 14,095 37,560 63,943 89,480 111,606 127,556 

 
 
Projected - using weighted average link factors less one standard deviation. 
 k=1 k=2 k=3 k=4 k=5 k=6 k=7 
i=3 2,053 7,090 10,248 12,296 13,538 14,414 14,553.7 
i=4 2,338 8,216 11,975 14,442 15,833 16,738.2 16,900.3 
i=5 2,861 9,730 14,182 17,361 19,081.3 20,172.2 20,367.5 
i=6 3,123 10,851 15,404 18,509.8 20,343.6 21,506.7 21,714.9 
i=7 3,756 11,959 17,149.6 20,607.7 22,649.3 23,944.2 24,176.0 
i=8 4,181 13,832.6 19,837.1 23,837.1 26,198.7 27,696.5 27,964.6 
fhat less one std. 
deviation 

3.3081 1.4341 1.2016 1.0991 1.0572 1.0097  

Sum proj values  13,833 36,987 62,955 88,273 110,058 125,677 
*Note 13832.6 = 4181 * 3.3081 
 
Projected - using weighted average link factors plus one standard deviation 
 k=1 k=2 k=3 k=4 k=5 k=6 k=7 
i=3 2,053 7,090 10,248 12,296 13,538 14,414 14,626.1 
i=4 2,338 8,216 11,975 14,442 15,833 16,820.1 17,067.3 
i=5 2,861 9,730 14,182 17,361 19,132.7 20,325.4 20,624.2 
i=6 3,123 10,851 15,404 18,684.0 20,590.3 21,873.9 22,195.4 
i=7 3,756 11,959 17,330.6 21,021.2 23,166.0 24,610.1 24,971.9 
i=8 4,181 14,357.4 20,807.1 25,238.0 27,813.0 29,546.8 29,981.2 
fhat plus one std. 
deviation 

3.4336 1.4492 1.2130 1.1020 1.0623 1.0147  

Sum proj values  14,357 38,138 64,943 90,702 113,176 129,466 
Note 14357.4 = 4181* 3.4336 
 
We calculated the mean square error using the Mack predictor (and in this case the L-predictor 
gave almost the same value.)  
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Mean Square Error, Mack Predictors, Alpha=1 
       
acc yr U[i] Vhat[i] mse(C,Chat) Zhat[i] Total mse Sqrt 
i=3 3,351 1,309 4,660 20,264 24,924 157.872 
i=4 9,389 3,488 12,876 39,422 52,299 228.690 
i=5 14,104 5,839 19,943 43,012 62,955 250.908 
i=6 51,129 17,265 68,395 84,200 152,594 390.633 
i=7 107,697 38,273 145,971 90,222 236,192 485.996 
i=8 866,973 343,886 1,210,859 0 1,210,859 1,100.391 
Overall 1,052,644 410,060 1,462,704 277,119 1,739,823 2,614.490 
Note 2614.490 is the square root of 1,739,823. 
 
Mean Square Error as a percent of Ultimate and of Reserves, Alpha=1 
 Ultimate Losses To 

Date 
    

acc yr C[i,n] C[i,p] Reserve[i] Sqrt Sqrt / Ult Sqrt / Res 
i=3 14,590 14,414 176 158 1.08% 89.84% 
i=4 16,984 15,833 1,151 229 1.35% 19.88% 
i=5 20,496 17,361 3,134 251 1.22% 8.01% 
i=6 21,954 15,404 6,550 391 1.78% 5.96% 
i=7 24,571 11,959 12,613 486 1.98% 3.85% 
i=8 28,961 4,181 24,780 1,100 3.80% 4.44% 
Overall 127,556 79,152 48,404 2,614 2.05% 5.40% 
Note 48,404 = 127,556 - 79,152 
 
Various Constants -- Alpha=1 Weighted Average 
 k=1 k=2 k=3 k=4 k=5 k=6 
fhat, wtd ave 3.3708 1.4416 1.2073 1.1006 1.0598 1.0122 
fhat squared 11.3625 2.0783 1.4576 1.2112 1.1231 1.0245 
beta ($) 10,644.2 36,260.7 52,515.0 63,401.3 50,669.3 36,917.8 
sigma-sq ($) 41.920 2.078 1.678 0.139 0.338 0.233 
sigma-sq / beta 3.9383E-03 5.7300E-

05 
3.1952E-
05 

2.1905E-
06 

6.6760E-
06 

6.2981E-
06 

std dev (fhat) 0.0628 0.0076 0.0057 0.0015 0.0026 0.0025 
hhat-sq 11.3586 2.0783 1.4575 1.2112 1.1231 1.0245 
 
In the chart below we compare the various projected ultimate with the ultimate computed using 
the alpha=1 weighted average link ratios. Timothy Peterson computed the ultimate using 
maximum and minimum link ratios in his tables 7-11 and 7-13. The results are shown below. 
 
Variations in Projected Ultimate 
 Projected 

Ultimate 
Loss To 
Date 

Reserve Differenc
e 
versus 
row (1) 

Differenc
e as % 
Ultimate 

1. Average link ratio 127,556 79152 48,404 0 0.00% 
2. Average link ratio plus one std 
dev. 

129,466 79152 46,525 1,910 1.50% 

3. Average link ratio less one std 125,677 79152 50,314 -1,879 -1.47% 
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dev 
4. Maximum link ratios (tab 7-11) 131,681 79152 52,529 4,125 3.19% 
5. Minimum Link ratios (tab 7-13) 122,819 79152 43,667 -4,737 -3.77% 
 
 
Mean Square Error as a percent of Ultimate and Reserves 
 Total mse as percent 
Projected Ultimate 127566 2.05% 
Losses to Date 79,152 3.30% 
Projected Reserve 48,404 5.40% 
Mean Square Error 2,614  
 
 
SECTION 5. MURPHY’S VARIABILITY MEASURE. 
 
In this section we examine the variability estimates given in Daniel Murphy’s paper, Unbiased 
Loss Development Factors, Casualty Actuarial Forum (1994), pp. 154-222.  
 
The Murphy Prediction Error 
 
We follow Murphy’s notation, with some modifications -- so that the notation is similar to Mack’s. 
We let 
 1 1m I+ = +  = number of accident years 
 1 1n J+ = + =  number of development ages 
 ,i jC  = cumulative claims ($) for accident year 0, ,i I= K  and 0, ,j J= K  

 0,0C  refers to the youngest accident year, and development age 12 months. 

[In Mack’s papers 0,0C  refers to the oldest accident year and development age 12 months.] 

 
Typically, I J=  but sometimes I J> . 
The losses to date are the diagonal entries: 0,0 1,1 ,{ , , , }J JC C CK  

The “known” values are those on or below the diagonal: ,{ : }i jD C i j= ³  

The values that are “unknown” and must be projected are ,{ : }i jC i j<  

For 5, 4m n= =  the following are the known values 
 

0,0

1,0 1,1

2,0 2,1 2,2

3,0 3,1 3,2 3,3

4,0 4,1 4,2 4,3

C

C C

C C C

C C C C

C C C C

 
 
 
 
 
 
  

 

 
Definitions 
 (0) ,{ : 0 , 0 }i kw i m k n≤ ≤ ≤ ≤  are fixed constants -- we assume here that they all equal “1” 

(1) , , 1 ,/    for  0,..., 1i k i k i kF C C k J+= = −  
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(2) , , ,
ˆ / ( 0,..., 1)

m m

k i k i k i k
i k i k

f F w w k n
= =

= = −∑ ∑   (simple average, 0α = ) 

(3) 2 2
, ,

1 ˆˆ ( )
1

m

k i k i k k
i k

w F f
m k

σ
=

= −
− − ∑  (spread factor) 

 
(5a) The “losses to date” are those that lie on the diagonal ,{ :   for  0}i jLTD C i j i= = ³ . 

(5b) The ultimate losses are those on the last column ,{ : 0,..., }i nULT C i m= =  

(5c) The unknown remaining losses are , ,i i i i n i iR ULT LTD C C= − = −  

(6a) Hat notation for claims in the known region: , ,
ˆ
i k i kC C=  where i k³  

(6b) Estimated Claims in the unknown region: , , 1
ˆ ˆˆ   where  i<i k i i i kC C f f k−= L  

(6c) Estimated Ultimate Claims, accident year i : ,
ˆˆ { : 0,... }i nULT C i m= =  where 

 , , 1
ˆ ˆˆ

i n i i i nC C f f −= L  where i n<  and , ,
ˆ
i n i nC C=  for i n³  

(6d) Estimated Loss Reserve, accident year i  (IBNR): ˆ
i i iR ULT LTD= − . 

(6e) Estimated Loss Reserve, all accident years 
1

ˆ ˆ
m

i
i

R R
=

= ∑ . 

We assume that the claims are “fully developed” for i n³ . Murphy uses the notation " "nS  for 

unknown and not fully developed future claims and ˆ" "nM  for the estimated ultimate claims.  
 
(5b) 0, 1, 1,n n n n nS C C C −= + + + =L  unknown ultimate claims at “age n”. 

(6c)  0, 1, 1,
ˆ ˆ ˆˆ

n n n n nM C C C −= + + +L  = estimated ultimate claims 

 
Stochastic Assumptions. 
We will limit our discussion to Murphy’s “simple average development” (or SAD) model, or Model 
III. The other models are inconsistent. [In Mack’s notation 0α = .] Assumptions CL1, Cl2, Cl3 
are as in Mack (see Murphy page 157-158) 
 
 CL1. , ,0 ,( | ,..., )i k i i k kE F C C f=  where ( 0,..., ) ( 1,..., 1)i m k n= = −  

CL2. 2
, ,0 ,( | ,..., )i k i i k kVar F C C σ=  where ( 0,..., ) ( 1,..., 1)i m k n= = −  and  

CL3. The accident years ,0 , ,0 ,{ ,...., }  and  { ,...., }g g n i i nC C C C  are independent for all  and g i .  

 
In addition we add another assumption CL4, which Murphy calls CLIA (Chain Ladder 
Independence Assumption; see Murphy 161) 
 
  CL4. The ,{ :1 }i kF k n≤ ≤  are independent. 

 
The assumption CL4 (CLIA) is consistent CL1-CL3 with Murphy’s SAD model but inconsistent 
with the CL1-CL3 assumptions of his other models. Murphy uses contingent probability theory 
using the following sets 
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,{ : }i kD C i k= ³  = known values 

,{ : }k i jB C j k= ≤  = data on or prior to development age k . 

,{ : 0,..., }i i kA C k n= =  = i -th accident year . 

i iD D A= ∩  = i -th accident year, but known values. 

, ,{ : }i k i k i jG A B C j k= ∩ = ≤  = i -th accident year, on or prior to development age k. 

The ,{ , , }k i i kB A G  include both known and unknown values.  

 
Definition. Murphy’s estimate of the Prediction Error is 

 ˆPredictionError Var ( ) Var( )D n nS M= + . 
 

Summation Theorem 
1 1

, ,
0 0

Var { } Var ( )
n n

D i n D i n
i i

C C
− −

= =
=∑ ∑  

Proof. See the earlier proof. Note that the independence of ,{ : 0,...., }i nC i m=  does not imply 

that their projections ,{ ( ) : 0,...., }D i nE C i m=  are independent. 

 
Our Theorem 4C (cf Murphy at 211). Assumptions as above 

2 2 2 2
, 1 , 1 1 1 , 1Var ( ) ( ) ( )Var ( )D i n n D i n n n D i nC E C f Cσ σ− − − − −= + +  for 0,..., 1i n= −  

Proof. Recall ,{ : }h jD C j h= ≤  are the “known” values; ,0 ,{ ,..., }i i i JA C C=  is the i-th accident 

year; ,{ : }k h jB C j k= ≤  are values for k-th development age and before; i iD D A= ∩ ; 

,i k i kG A B= ∩ . Then 

 , ,Var ( ) Var ( )
iD i n D i nC C=  (properties of the conditional expectation and CL3) 

 
, 1 , 1, ,Var ( ) Var ( )

i i n i i nD G i n D G i nE C E C
− −

= +  (property of conditional expectation since 

, 1i i nD G −⊆ .) 

 2 2
, 1 1 1 , 1( ) Var ( )

i iD i n n D n i nE C f Cσ− − − −= +  (by CL1 and CL2) 

 2 2
1 1 , 1Var ( )

in n D i nf Cσ − − −= +  (factoring out constants) 

Note 2 2Var ( ) ( ) ( )
i i iD D DX E X E X= +  for any random variable X so the result follows. 

 

Our Theorem 7C (cf Murphy 218). Recall 
1

,
0

n

n i n
i

S C
−

=
= ∑ .  

Under the Chain Ladder hypothesis CL1-CL4 we have 

(a) 2 2
1 0,0 0Var ( )D S C σ=  

(b) 
1

2 2 2
, 1 1 1

0

Var ( ) ( ) ( )Var ( )
n

D n D i n n n D n
i

S E C f Sσ
−

− − −
=

= + +∑  

 
Proof of (a) . 
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 Note that 0 0,0{ }D C=  and 1 0,0S C=  is the only “known” value for accident year 0. Thus  

 
0,01 0,1Var ( ) Var ( )D CS C=  2 2

0 0,0Cσ=  (by CL1)  

Proof of (b) By the Summation Theorem 
1 1

, ,
0 0

Var ( ) Var { } Var ( )
n n

D n D i n D i n
i i

S C C
− −

= =
= =∑ ∑ . 

Hence by theorem 4C.  

 
1 1 1

2 2 2 2
, 1 , 1 1 1 , 1

0 0 0

Var ( ) Var ( ) ( ) ( ) Var ( )
n n n

D n D i n n D i n n n D i n
i i i

S C E C f Cσ σ
− − −

− − − − −
= = =

= = + +∑ ∑ ∑ .  

  
Now 1, 1Var ( ) 0D n nC − − =  since 1, 1n nC D− − ∈ , so the second sum is 1Var ( )D nS − . 

=== 

Lemma 6. 1 Recall 0, 1, 1,
ˆ ˆ ˆˆ

n n n n nM C C C −= + + +L . Then 

(a) 1 0,1 0 0,0
ˆˆM̂ C f C= =  

(b) 2 1 1 1,1 1 0 0,0 1,1
ˆ ˆ ˆˆ ˆ( ) ( )M f M C f f C C= + = +  

(c) 1 1 1, 1
ˆˆ ˆ( )n n n n nM f M C− − − −= +  

Proof (a) Follows from the definition 

Proof (b) 2 0,2 1,2 1 0 0,0 1 1,1 1 1 1,1
ˆ ˆ ˆ ˆˆ ˆˆ ˆ( )M C C f f C f C f M C= + = + = + .  

Proof (c) 

 
0, 1, 1, 1 0, 1 2, 1 1 1, 1

1 1 1, 1

ˆ ˆˆ ˆ ˆ ˆ ˆ ˆˆ ( )

ˆ ˆ( )

n n n n n n n n n n n n

n n n n

M C C C f C C f C

f M C

− − − − − − − −

− − − −

= + + + = + + =

= +

L L
  

 
Lemma 6.2 Using CL4 we can show: 
(a) 0̂f  is independent of 0,0C  

(b) 1̂f  is independent of 1 1,1 0 0,0 1,1
ˆˆ( ) ( )M C f C C+ = +  

(c) 1n̂f −  is independent of 1 1, 1
ˆ( )n n nM C− − −+  

Proof. (a) 0̂f  depends on accident years 1 to m while 0,0C  is from accident year 0. The result 

follows from CL3 -- which says the accident years are independent. 

Proof (b)  By CL4 the link ratios 1 0
ˆ ˆ  and  f f  are independent. Also 1̂f  depends on accident 

years 2 to m while 0,0C  and 1,1C  depend on accident years 0 and 1. 

Proof (c) Follows as in (b) 
 
 
Lemma 6.3. Suppose   and  X Y  are independent random variables on the same probability 

space. Then 2 2Var( ) ( )Var( ) ( )Var( ) Var( )Var( )X Y E X Y E Y X X Y= + +  

Easy Proof. Use 2 2Var( ) ( ) ( )X E X E X= −  and expand both sides. 
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Theorem 6. cf Murphy p.215 

 
1 1 1, 1 1 1 1, 1

1 1 1, 1

ˆ ˆˆ ˆ ˆVar( ) Var( )Var( ) Var( ) ( )

ˆ ˆ( )Var( )

n n n n n n n n n

n n n n

M f M C f E M C

E f M C

− − − − − − − −

− − − −

= + + + +

+ +
 

 
Proof. Follows immediately from Lemma 6.2 and Lemma 6.3 
 

Murphy’s Computation Rules. The ˆVar( )nM  is computed using the following “computation 
rules” 

(a) 1
ˆVar( )nf −  is estimated by 2

1ˆnσ −  

(b) 1
ˆ( )nE f −  is estimated by the observed value of 1n̂f −  

(c) 1 1, 1
ˆVar( )n n nM C− − −+  is estimate by 1

ˆVar( )nM −  

(d) 1 1, 1
ˆ( )n n nE M C− − −+  is estimated by the observed value of 1 1, 1

ˆ( )n n nM C− − −+  

 
Note that theorems 6 and 7C provide the formulas for computing Murphy’s “prediction error” 

 Var(Prediction) = ˆVar ( ) Var( )D n nS M+ . 
 

Note that , 1 ,
ˆ ˆ, ,  and   -algebra generated by { : }k k k k i jf C M D C i jσ+ ∈ = ³  for all 0,1,....,k n= . 

Hence ˆ ˆ( )D n nE M M=  and ˆVar ( ) 0.D nM =   
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