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Abstract 

In this paper we consider pricing of maturity guarantees for a unit-linked contract using the 
Esscher transform, a traditional actuarial technique. We consider three stochastic processes for 
the interest rate underlying the unit fund. The paper illustrates that the choice of central 
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1 Introduction 

1.1 Developments in financial economics have recently evoked a great deal of 
interest among the actuarial community, especially in the wake of recent 
developments in the life insurance industry. For many years, actuarial science 
and financial economics have been going their separate ways, despite the 
similarities in the nature of problems addressed.  

1.2 The press release announcing that Merton and Scholes were awarded the Nobel 
Prize in Economics in 1997 stated: 

“The method adopted by this year’s laureates can therefore be used to value 
guarantees and insurance contracts. One can view insurance companies and the 
option market as competitors.” [7].  

1.3 Options and guarantees offered by life insurers are nothing new, yet a lot more 
attention is now being drawn to the way they are priced and reserved for. There 
may be several reasons for this including: 

 certain high profile debacles in the insurance industry (e.g. Equitable Life);  

 a move towards fair value accounting for insurers; 

 a falling interest rate regime witnessed in many countries; 

 an increased attention being drawn to the balance sheet of all corporates, 
including insurers, in this era of corporate failures; 
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 focus on executive stock options and how they are reflected in the financial 
statements; 

 advances in option valuation theory.  

1.4 With an increased focus on transparency, actuaries have now embraced 
financial economic techniques whole-heartedly. Many applications of financial 
economics have been found in actuarial science. However, actuarial science also 
has much to contribute to the growth of financial economics.  

1.5 This paper reviews one such application of a traditional actuarial technique, the 
Esscher transform, to value option contracts. A maturity guarantee on a unit-
linked contract offered by a life insurer can be likened to a European put option 
sold by the insurer, which can then be valued using the put option price. A 
reader new to financial economics may want to read Appendix A prior to 
proceeding with the other sections of the paper.  

1.6 In Section 2, we introduce the Esscher transform and show how it can be used 
to value put options under a general form for the underlying stock price. In 
Section 3 we show how a maturity guarantee can be valued under the following 
three different assumptions for the underlying unit fund growth:  

 Wiener Process; 

 Shifted Poisson Process; and, 

 Shifted Gamma Process.  

1.7 Section 4 contains a few graphs to study the nature of the maturity guarantee 
and its sensitivity to various models and parameters. Apart from the Esscher 
transform, there are other actuarial techniques that have also been employed to 
value option contracts. These are briefly discussed in Section 5. Another 
interesting application of an option contract is to value surrender guarantees, 
which are much harder to value as they involve a discretionary element to the 
time of surrender. The paper is concluded in Section 6 with some final remarks. 

 

2 Esscher transform 

2.1 In this section we show how an actuarial technique can be fruitfully used to 
value option contracts. The Esscher transform is a powerful tool invented by 
actuarial science. Its initial applications included numerical computation of the 
distribution of aggregate claims and simulation of rare events. 

Definition 

2.2 For ,0t  let S(t) denote the price of a non-dividend paying stock at time t. We 
assume that there exists a stochastic process, 0)}({ ttX , with stationary and 
independent increments, initial value ,0)0( X  such that  

.0,)0()( )(  teStS tX  
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2.3 The stock price, S(t), is thus growing with interest, which has a stochastic 
process as denoted by X(t). 

2.4 We also assume that the random variable X(t) has a probability density function 
f(x,t). The moment generating function M(z,t) of X(t) is defined by 






 dxtxfeeEtzM zxtzX ),(][),( ))((  

  

 and the Esscher transform with parameter h of f is defined by 
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2.5 For the corresponding moment generating function of );,( htxf  
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2.6 Since ),( tzM is continuous in t, it can be shown that 
thzMhtzM )];1,([);,(   

 Risk-neutral Esscher transform 

2.7 As we want to ensure that stock prices are internally consistent, we seek *hh   
so that the discounted stock price process, )(ttSe  , is a martingale with respect to 
the probability measure corresponding to h*. In particular, 

)]([*)]([*)0( tSEetSeES tt     

 where   denotes the constant risk-free force of interest. 

2.8 Using the equation in 2.2, the parameter h* is the solution of the equation 

],[*1 )(tXt eEe   or 

*).;,1( htMe t   

2.9 Setting t=1 we get, 

*)].;1,1(ln[ hM  

2.10 Gerber and Shiu [2] call the Esscher transform of parameter h* the risk-neutral 
Esscher transform, and the corresponding equivalent martingale measure the 
risk-neutral Esscher measure. The merit of the risk-neutral Esscher measure is 
that it provides a general, transparent and unambiguous solution.  
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 Valuing derivatives using Esscher transform 

2.11 The value of a derivative is the expected discounted value of the implied 
payoffs. Let us consider a European call option on the stock with exercise price 
K and exercise date .0,   

2.12 The value of this option (at time 0) is 

].))0(([* 
  KSeE t  

2.13 Defining )],0(/ln[ SK  the above equation becomes 




 


  dxhxfKeSe xt *);,(])0([  

2.14 Gerber and Shiu [2] show that the value of the European call option with 
exercise price K and exercise date   is  

*)];,(1[)]1*;,(1)[0( hFKehFS t      

2.15 Applying the put-call parity theorem (see Appendix A), we can deduce the 
value of the European put option with exercise price K and exercise date   as, 

)]1*;,()[0(*)];,([  hFShFKe t   

2.16 The Esscher transform: 

 allows us to find a deflator which achieves the martingale property; 

 does not assume a particular form of distribution underlying the stock price; 
and, 

 can also be used where the underlying stock price exhibits jumps (e.g. 
Poisson Process).  

 

3 Valuing maturity guarantees 

3.1 In the previous section we derived formulae for call and put options without 
assuming any specific distribution for the interest rate process X(t). In this 
section we illustrate the European put option results obtained previously to 
value maturity guarantees.  

3.2 A maturity guarantee on a unit-linked product can be likened to a European put 
option, where the insurer sells the option to the insured to ‘put’ the insurance 
contract at a pre-determined value at maturity. The insurer can estimate the 
value of the guarantee by assuming a certain underlying stochastic process for 
the unit fund and the probability of survival to maturity.  

 Parameters  

3.3 The following table sets out the parameters used in the models.   
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Parameter Symbol Description/ comment 

Age x Age of the policyholder at policy 
inception 

Single premium P Single premium paid by the policyholder 

Allocation rate AllocationRate Percentage of premium allocated to the 
unit fund. 

Bid-offer spread BOS The amount by which the offer price 
exceeds the bid price. 

U(t) U(t) Value of the unit fund at time t 

K K Guaranteed maturity value. Defined as 
return of single premium with guaranteed 
interest rate. 

Delta   Risk-free force of interest 

i i Guaranteed interest rate 

Tau   Term 

Kappa   ))0(/ln( UK  

Mu   Mean of the stochastic process 
underlying the interest rate at which the 
unit fund is growing. 

Sigma   Standard deviation of the stochastic 
process underlying the interest rate at 
which the unit fund is growing. 

k k Shift parameter for the Shifted Poisson 
process 

Lambda star *  Mean of the Shifted Poisson process 

c  c Shift parameter for the Shifted Poisson 
and Shifted Gamma processes. 

Alpha   Shape parameter of the original Gamma 
process 

Beta   Scale parameter of the original Gamma 
process 

 

3.4 The unit fund is modelled in the following manner. Let U(t) denote the value of 
the unit fund at time t. The initial value of the unit fund is obtained as:  
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RateAllocationBOSPU  )1()0(  

3.5 The unit fund at time t is then obtained as: 

 tforeUtU tX 0)0()( )(  

where )}({ tX  is the stochastic process underlying the interest rate at which the 
unit fund is growing.  

3.6 We assume three different processes for )}({ tX : 

 Wiener process; 

 Shifted Poisson process; and, 

 Shifted Gamma process.  

  

 Wiener process 

3.7 The Wiener process implies that the change in the logarithm of the unit fund is 
distributed normally. It is a continuous time model and is also the basis of the 
Black-Scholes model. The results derived for this model correspond to the 
Black-Scholes option pricing formula.  

3.8 Let the stochastic process )}({ tX  be a Wiener process with mean per unit time 
  and variance per unit time .2   

3.9 The Esscher transform (parameter h) of the Wiener process is 
 

}]
2

1
)exp{[);,( 222 tzzhhtzM    

 

 which is a Wiener process with modified mean per unit time 2 h  and 
unchanged variance .2  

3.10 It can be shown that the value of the maturity guarantee is given by the 
following equation 
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3.11 The above equation ignores the probability of survival to maturity. Taking 
probability of survival into account, the value of the maturity guarantee is 

xpA *  

  

 Shifted Poisson process 

3.12 The Poisson process is a discrete time model and is commonly encountered in 
actuarial work. For example, the surplus distribution process of an insurance 
company is classically modelled assuming that claims have a Poisson 
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distribution. One criticism of the Wiener process is its continuous nature, 
whereas in reality stock prices do exhibit jumps.  

3.13 Let )(tN  be a Poisson process with parameter   and k and c are positive 
constants. We assume that the stochastic process )}({ tX  follows 

cttkNtX  )()(  

3.14 Let 
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be the cumulative Poisson distribution function with parameter  . The 
cumulative distribution function of X(t) is  
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  

3.15 The Esscher transform (parameter h) of the Poisson process is 

tczeehtzM zkhk ])1(exp[);,(    

which is also a shifted Poisson process with modified Poisson parameter .hke  

3.16 The maturity guarantee can be valued as 

 x
k pekcUkcKe 

  *)}*;/)(()0()*;/)(({  . 

  

 Shifted Gamma process 

3.17 The Gamma process is the continuous time case of the Poisson process. This is 
exhibited in the graphs in Section 4.  

3.18 Let )}({ tY  be a Gamma process with parameters   and   and the positive 
constant c is the third parameter. We assume that the stochastic process )}({ tX  
follows 

cttYtX  )()(  

3.19 The cumulative distribution function of )(tX  is 

),;(),( tctxGtxF   

 where )(G  is the cumulative Gamma distribution function. 

3.20 The Esscher transform (parameter h) of the shifted Gamma process is 
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which shows that the transformed process is of the same type, with   replaced 
by .h  

3.21 The value of the maturity guarantee can be calculated as 

 .**)]},;(1[)0(*)],;(1[{ xpcGUcGKe 
    

 

4 Model Output 

4.1 In this section we illustrate the value of the maturity guarantee under the three 
different models. The values of the parameters used in the models are set out in 
Appendix C. 

Term 

4.2 The following graph shows the value of the maturity guarantee as a function of 
term. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.3 The maturity guarantee is not a monotonically increasing function of term. This 
is due to the maturity guarantee applying at a point in time and not during the 
entire duration of the bond. It is interesting to note that a similar guarantee on 
surrender values would be a monotonically increasing function of time as the 
policyholder has the choice of surrendering the policy at any time before 
maturity. The interested reader is referred to [5, Chapter 7]. 

4.4 The point of inflexion for the models considered is around 10 years. 
Interestingly, single premium bonds sold in the market today commonly have a 
term of 10 years. 

4.5 The Shifted Gamma process is a continuous case of the Shifted Poisson process 
which explains the shape of the two curves. 
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4.6 The choice of model becomes more critical for longer-term guarantees as the 
value of the guarantee implied by the different model diverges. 

 

Volatility 

4.7 The following graph shows the value of the maturity guarantee as a function of 
volatility. 

 

 

 

 

 

 

 

 

 

 

 

4.8 The value of the maturity guarantee increases approximately linearly with 
volatility. The rationale being that the insurer selling the maturity guarantee 
loses from decreases in the unit fund, but has limited upside risk in the event of 
an increase in the unit fund. 

4.9 Hence, the cost of a similar guarantee would be higher in markets that 
experience greater volatility, e.g. India, where the annual volatility observed on 
the BSE Sensex for the period 1990-2001 is around 30%. This compares with 
an annual volatility of around 15% for the Dow Jones Industrial Average for the 
same period. 

Risk-free force of interest  

4.10 The graph below shows the value of the maturity guarantee as a function of 
delta. 
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4.11 The value of the maturity guarantee is a monotonically decreasing function of 
the risk-free force of interest. As interest rates increase, the expected growth 
rate of the unit fund tends to increase. Also, the present value of any future cash 
flow decreases due to a higher discount rate. Thus, the value of the maturity 
guarantee will decrease. 

4.12 The choice of model becomes more critical at lower risk-free force of interest.  

 

5 Further research 

5.1 In this paper we have described how maturity guarantees can be likened to a 
European put option and valued using Esscher transforms. Several authors have 
found other actuarial techniques that allow valuation of more complex 
guarantees. As an example, consider a guarantee offered by an insurer on 
surrender values on a unit-linked contract. Such a guarantee allows the 
policyholder the choice to surrender the insurance policy for a guaranteed 
amount any time before maturity, not just at maturity. The payoffs under such a 
guarantee are similar to that of an American put option.  

5.2 An American option is trickier to value than European options and usually 
require a numerical approach, as analytical solutions cannot be found. For 
example, the Black-Scholes model assumes a European option and cannot be 
used to value American options. Further, if discontinuities are allowed by 
assuming a discrete stochastic process underlying the unit fund (for example the 
Poisson Process), then the optimal time to surrender the policy must also be 
found. This problem arises as the value of the unit fund will not just hit the 
guaranteed surrender value but will fall further below it due to a downward 
jump.  
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5.3 Gerber and Shiu [3] show that this problem can be tackled by a result from ruin 
theory. They use the concept of discounted probability by relating the stochastic 
process underlying the stock with the surplus process assumed in ruin theory.  

5.4 Wilkie et. al. [8] discuss pricing, reserving and hedging of guaranteed annuity 
options by using two approaches, a stochastic investment model (based on the 
Wilkie model) and option pricing methodology. It is interesting to note that the 
Report of the Maturity Guarantees Working Party in 1980 considered the use of 
option pricing methodology to value such guarantees, but were not convinced of 
its applicability.  

 

6 Conclusions 

6.1 In this paper we have illustrated how a traditional actuarial technique can be 
used to value put options and then use the result to value maturity guarantees. 
The paper illustrates that the choice of central assumptions is far more important 
than the choice of model. However, in certain situations, for example, high 
volatility or low risk-free force of interest, the choice of model becomes more 
critical.  

 
6.2 Many other challenging problems exist in this fascinating subject, and the 

authors hope that the paper inspires others to consider some of them. 
 

6.3 As Keynes put it back in 1925: 
 

“It is a task well adopted to the training and mentality of actuaries, and not less 
important, I fancy, to the future of the insurance industry than the further 
improvement of Life Tables.” [7] 
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A Preliminaries of financial economics 

History 

A.1 Mathematical modelling of financial markets arguably began with Louis 
Bachelier’s seminal theses, Theorie de la Speculation in 1900, wherein he 
modelled the French capital market as a fair game. He proved mathematically 
that the standard deviation of the distribution of future price changes is directly 
proportional to the square root of elapsed time, a result that was already 
empirically known to French actuaries and being exploited in the French stock 
market even before Bachelier found a mathematical proof for it.  

A.2 Financial economics has since developed through advances in the theory of 
stochastic processes, especially diffusion processes, to model prices and risk. 
The celebrated Black-Scholes model of option pricing in 1973 was the most 
important breakthrough in financial economics after Bacheliers’ work. The 
model, which is based on the assumption of no-arbitrage, has had a significant 
influence on the way traders’ price and hedge options. The Black-Scholes 
model has gained widespread acceptability in the derivatives market owing to 
its simple and elegant solution to what is essentially a complex problem. It has 
been pivotal to the growth of financial economics and the derivatives market in 
the 1980s and 1990s.  

A.3 In the following sections, we describe some of the rudimentary theory behind 
financial economics.  

 Types of derivative securities 

A.4 A derivative is a security that pays its owner an amount that is a function of the 
values of the underlying securities. That is, the value of the derivative is 
‘derived’ from the underlying security. Forwards, futures, options and swaps are 
common examples of derivative securities. 

A.5 A forward contract is an agreement to buy or sell an asset at a certain future 
time for a certain price. It is traded over-the-counter. These contracts are 
commonly used to hedge foreign currency risk.  

A.6 A futures contract is, like a forward contract, an agreement to buy or sell an 
asset at a certain time in the future for a certain price. Unlike a forward contract, 
a futures contract is normally traded on an exchange. As the two parties to the 
futures contract do not necessarily know each other, the exchange also provides 
a mechanism that gives the parties a guarantee that the contract will be 
honoured. To minimise risks of default, the exchange/ broker will require both 
parties to deposit funds in what is termed a margin account. At the end of each 
trading day, the margin account is adjusted to reflect the parties’ gain or loss. 
This revaluing adjustment is called ‘marking-to-market’. A futures contract is 
commonly traded before maturity.  

A.7 An option is an instrument that gives the holder a right (but not an obligation) to 
exercise his position at a certain price in the future. There are two basic types of 
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options namely, call options and put options. A call option gives the holder a 
right to buy the underlying asset by a certain date for a certain pre-determined 
price. A put option gives the holder a right to sell the underlying asset by a 
certain date for a certain price. Options that can be exercised only on the 
expiration date are called European options. Options that can be exercised on 
any date before maturity are called American options.  

A.8 A swap is an agreement between two parties to exchange cash flows in the 
future. The agreement defines the dates when the cash flows are to be paid and 
the way that they are to be calculated. Currency swaps and interest rate swaps 
are the most popular swap arrangements in the market.  

 Martingale 

A.9 Martingale theory plays a central role in valuing derivative securities. A 
martingale is a stochastic process whose expected value at any time in the future 
is equal to its current value. 

 Risk-neutral valuation 

A.10 Risk-neutral valuation is a technique employed in financial economics to value 
derivative securities. It introduces an equivalent martingale measure with 
respect to which the discounted stochastic process under consideration becomes 
a martingale. The importance of this valuation method lies in the fact that for 
every stochastic process there exists an equivalent martingale measure (not 
necessarily unique) with respect to which the discounted stochastic process 
becomes a martingale. The equivalent martingale measure is known as the risk-
neutral probability measure.  

A.11 This implies that under the risk-neutral measure the stochastic process grows at 
the risk-free rate of return. The risk-neutral measure is often referred to in 
literature as the ‘Q-measure’ to distinguish it from the real world measure, often 
called the ‘P-measure’.  

A.12 It is important to understand that risky assets (like equities, corporate bonds) 
will grow at interest rates different from the risk-free rate of return. The risk-
neutral valuation framework does not assume that investors will be satisfied 
with risk-free rate of returns for risky assets.  

A.13 Thus, under the risk-neutral valuation framework, the price of a derivative 
security is given by the expectation of the discounted payoff, where the 
expectation is taken with respect to the risk-neutral probability measure.  

 No-arbitrage valuation 

A.14 Modern asset pricing theory is based on the law of one price, which states that 
portfolios with identical payoffs should have the same price, or there would be 
pure arbitrage opportunities in the market. This law is used to value derivative 
securities by finding ‘replicating portfolios’ consisting of stocks and bonds that 
yield the same payoffs in all scenarios. The value of the derivative security is 
then given by the value of the replicating portfolio.  
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 Equilibrium pricing 

A.15 There are situations when the no-arbitrage valuation approach cannot be 
applied. For example, when a new security is introduced and this security 
cannot be replicated by the existing traded securities. In these situations, we can 
use the equilibrium pricing approach. 

A.16 This approach provides a more general framework for pricing securities. We 
assume that individuals (or agents) with fixed initial resources (or endowments) 
trade in a financial market to maximise their expected utility. When no 
individual has an incentive to trade at these prices, the market reaches a state of 
equilibrium. The prices that evolve in this state of equilibrium are called 
equilibrium prices. 

A.17 Equilibrium prices are related to the attributes of the agents in the economy, 
such as the endowments, beliefs and preferences, as well as to the type and 
structure of the traded securities. If any of these attributes change, the resulting 
equilibrium prices will, in general, change as well. 

 Put-call parity 

A.18 The put-call parity theorem states that the payoff from a portfolio consisting of 
one share of the underlying stock and one European call option is equivalent to 
a portfolio consisting of a riskless zero-coupon bond and one European put 
option. Using the law of one price, the value of the two portfolios at any date 
prior to maturity must be equal as their payoffs at maturity are equal. 

A.19 Hence, if we know the price of the European call option, the underlying stock 
and the riskless zero coupon bond, we can deduce the price of the European put 
option, and vice versa. For the put-call parity theorem to hold, the exercise date 
and exercise price of the European call and put options must be similar. 

A.20 The interested reader is referred to [5] and [6] for further background reading. 
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B BSE Sensitive Index return and volatility 

B.1 The following graph illustrates the movement of monthly averages of the BSE 
Sensitive Index (“Sensex”) for the period from April 1990 to November 2000. 
The annual volatility calculated for this period is around 30%. 

 

 

 

 

   
 
 
 
 
 
 
 
 
 
 
 

B.2 The graph below shows the volatile average monthly returns on the BSE 
Sensex. The annualised returns calculated for this period are estimated to be 
around 16%.  
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C Central assumptions 

C.1 The following table sets outs the central assumptions used in the models. The 
values used are for illustration purposes only. 

 

Symbol Wiener process Shifted Poisson 
process 

Shifted Gamma 
process 

x 35  35 35 

Mortality 100% LIC 94-96 100% LIC 94-96 100% LIC 94-96 

P 1,000 1,000 1,000 

AllocationRate 99% 99% 99% 

BOS 5% 5% 5% 

K 1,350 1,350 1,350 

  ln(1.06) ln(1.06) ln(1.06) 

  10 10 10 

  0.3613 0.3613 0.3613 

  NA 7% 7% 

  30% 30% 30% 

U(t) 940.50 940.50 940.50 

k NA 30% NA 

c NA 23% 53% 

*  NA 0.8240 NA 

  NA NA 4 

  NA NA 10 

i 3% 3% 3% 
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