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Abstract 
 
Increases in computer power and advances in statistical modelling 
have conspired to change the way financial modelling is performed in 
general insurance.  Not only have the techniques used to tackle certain 
problems changed, but also the problems themselves have become 
increasingly complex.  The main driver of change has been the use of 
simulation techniques to incorporate uncertainty into financial models, 
or to provide solutions to problems that are intractable or 
impracticable when attempted analytically.  This paper provides an 
introduction to some of the issues, and provides examples through two 
case studies. 

 
 

1. Introduction 
 
Actuarial science is concerned essentially with uncertainty of potential future 
outcomes associated with frequency of insured events, and severity of the events, 
given they have occurred. 
 
In life assurance and pensions, frequency is concerned with mortality (or its corollary, 
survival), and severity is concerned with amounts paid out on death or survival.  The 
amounts paid might be fixed, as defined by the contract, or variable, depending on 
investment returns. 
 
In general insurance, considerations of frequency and severity components will 
depend on many factors, most notably, type of insurance.  For example, for motor 
insurance, it is common to consider frequency and severity of possible components of 
loss, including vehicle damage, bodily injury, theft, fire, third party property and so 
on.  Other classes, such as employer’s liability, public liability, aviation hull, marine 
cargo, space, etc, will have their own characteristics.  With reinsurance, it is necessary 
to consider frequency and severity of the underlying business before superimposing 
the terms of the reinsurance. 
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Traditional actuarial mathematics has been concerned with deterministic modelling 
approaches, looking at “best estimates” of potential outcomes, and stress testing key 
model inputs to investigate a few adverse scenarios.  One of the problems with this 
approach is the difficulty of assigning probabilities to adverse scenarios, or of 
answering the question “What is the probability of future experience being worse than 
our best estimate”? 
 
As soon as we start asking questions about probability, or uncertainty, we are 
considering risk.  The field of Risk Theory has developed to try and answer questions 
concerning uncertainty.  Early work in risk theory moved away from deterministic 
models to incorporate assumptions concerning uncertainty, but did so in an analytic 
mathematical framework.  That is, complex formulae were developed for aggregate 
claim size distributions, the probability of ruin and so on.  If closed form solutions 
were not available, advanced mathematical techniques were adopted using 
expansions, transforms or recursive algorithms to simplify the computations. 
 
Due to the complexity of many insurance problems, traditional risk theory has 
remained a largely academic discipline, concentrating on relatively straightforward 
insurance problems (even if the mathematics is complex). 
 
Rather than working with pen and paper, and a vast array of sophisticated 
mathematical techniques, actuaries are increasingly harnessing the power of 
computers to build computer models that simulate potential future outcomes of 
insurance contracts and systems.  Computers can generate thousands of possible 
outcomes, both good and bad, of relevant insurance variables under fairly limited 
assumptions, in seconds or minutes.  Complete distributions of outcomes can then be 
used to make statements about risk, or used in further calculations.  As Daykin, 
Pentikainen and Pesonen (1996) state: 
 

“Modern computer simulation techniques open up a wide field of 
practical applications for risk theory concepts, without the restrictive 
assumptions, and sophisticated mathematics, of many traditional 
aspects of risk theory”. 

 
Simulation (or stochastic) modelling is being used increasingly for asset and 
economic modelling, catastrophe modelling, reinsurance pricing and optimisation, 
capital adequacy and allocation, reserving, business planning, enterprise wide risk 
modelling, and satisfying the demands of regulators, and to some extent, ratings 
agencies. 
 
This paper illustrates different aspects of simulation modelling through 2 case studies.  
Insurance pricing is considered in Section 2, and a liability model of an insurance 
enterprise in Section 3. 
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2. Insurance Pricing 
 
This case study considers pricing of an insurance contract covering Employer’s 
Liability and Public Liability for a City Council (local government).  The problem is 
considered from the perspective of the insurance company providing the insurance 
cover. 
 
Employer’s liability losses arise from employees suing the council for damages as a 
result of negligence in respect of health, safety and welfare at work.  Claims can be 
made, for example, for compensation due to injury or death while at work if 
negligence can be proven. The council pays for smaller claims itself, but buys 
insurance cover for claims in excess of £100k per event up to a limit of £20million.   
 
In addition, the council can be sued by members of the public for compensation due to 
injury or pecuniary loss, again where the council can be proven to be negligent in 
some way.  The council pays for smaller claims itself, but buys insurance cover for 
claims in excess of £100k per event up to a limit of £25million.   
 
The council is aware that it could experience above average levels of loss from a high 
frequency of smaller losses, not just a single large loss, so it also buys aggregate 
deductible protection that provides cover for the sum of policy deductibles exceeding 
£1.25m. 
 
The insurance company has been asked to quote a single premium for the cover, and 
has been provided information on historic losses for background information. 
 
The company can address the problem using a ‘component pricing’ approach, that is, 
consider different types of potential loss and model them separately. Potential future 
losses can be simulated, from small to large, and the effect on the insurance contract 
calculated.  The risk profile to the insurance contract can then be used to set a 
premium taking account of risk. 
 
A frequency/severity approach can be used for each type; that is simulate the number 
of claims, and amounts of claims separately. In this case study, the types of loss 
considered are: 
 

 Employer’s Liability 
o Minor attritional (slips, cuts, etc through to more serious injury) 

involving only one individual per event 
o Major attritional (major disability or death) involving only one 

individual per event 
o Minor catastrophe (fire, explosion etc) involving a small number of 

people 
o Major catastrophe involving a large number of people 

 Public Liability 
o Minor attritional (very high frequency, low severity) 
o Major attritional 
o Minor catastrophe 
o Major catastrophe (for example, fire, building collapse at a large public 

building) 
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Before simulating, it is necessary to choose statistical distributions for the frequency 
and severity components of each type of loss, and to choose appropriate values for the 
parameters of the distributions. 
 
Where historical loss data is available, it can be used to fit a variety of statistical 
distributions, and the “best” chosen for simulation purposes, taking account of 
goodness-of-fit, and the underlying characteristics of the distribution being fitted.  
Parameter estimates can be obtained using a variety of techniques, including method-
of-moments and maximum likelihood (see, for example, Klugman et al, 1998).  
Judgement is also needed in finalising parameter selection. 
 
Where data on historical losses is unavailable, for example with the catastrophe loss 
components, judgement is necessary in choosing suitable frequency and severity 
distributions and parameters. 
 
In this case study, a Poisson distribution was used for the frequency of each type of 
loss, where the expected frequency was obtained from observed data.  For example, 
historical experience suggested there were about 30 minor attritional employers 
liability claims per year, and about 500 minor attritional public liability claims per 
year.  There was no historical information on minor and major catastrophic losses, so 
their frequency was guessed after discussion with underwriters.  For example, a major 
catastrophic event was assumed to occur with a “return period” of 150 years.  From 
this information, a suitable frequency parameter was obtained.  Where a catastrophe 
event was simulated, the number of people involved was also simulated using a 
Poisson distribution. 
 
For the severity components, again, (inflated) historical losses were used (where 
available) to suggest a suitable distribution for simulation purposes.  For example, for 
public liability minor attritional losses, a Gamma distribution was used with a mean of 
£1,250 and a standard deviation of £1,500, truncated from below such that all 
simulate losses were above a minimum of £150.  For the catastrophe losses, where 
historic data was unavailable, a simple one parameter Pareto distribution was used, 
with a lower bound of £50,000 per loss. 
 
After the gross losses have been simulated, it is straightforward to net them down 
according to the terms of the insurance contract, and calculate the reinsurance 
recoveries.  From the insurer’s perspective, the reinsurance recoveries represent losses 
to the contract, and the distribution can be used to price the contract from the 
aggregate loss distribution. 
 
Given the aggregate loss distribution, there are several ways of calculating a risk-
adjusted price.  A basic approach might be to use expected loss plus a multiple of 
standard deviation: the higher the standard deviation, the higher the price.  Certainly, 
it would be foolhardy to charge less than expected loss.  At the other extreme, setting 
the price at the maximum simulated loss to the contract would result in no risk to the 
insurer, but would clearly be uneconomical to the insured.  We would expect the risk-
adjusted price quoted to lie between these extremes, and it is desirable if the pricing 
methodology adopted can reflect this.  One such methodology that has gained 
popularity was proposed by Wang (1999) and adopts a “proportional hazards” 



 5

transform.  Essentially, the aggregate loss distribution, expressed as a survival 
function, is transformed by raising it to a power 1/ρ.  The integral of the transformed 
survival function over the range gives a risk-adjusted expected value, and in a 
simulation world, it is straightforward to perform the integration numerically. The 
level of risk adjustment is controlled through the choice of ρ. When ρ = 1, the 
“adjusted” price is simply the untransformed expected value, and when ρ tends to 
infinity, the risk-adjusted price tends to the maximum simulated value.  Choosing a 
suitable value of ρ is more art than science, although an analysis of contracts that have 
been placed previously by the insurer can help.  In this case study, a value of ρ = 1.4 
was used. 
 
A diagram of the modelling process is shown in Figure 1.  The basic components of 
Employer’s Liability and Public Liability, Attritional and Catastrophe appear as boxes 
on the left hand side.  At this stage, gross losses are simulated, and are then fed 
through to the “Dependencies” box that imposes any dependencies between the 
different loss components.  One form of dependency might be to consider that the loss 
components are correlated in some way.  In this case study, it has been assumed that 
the loss components are independent (a reasonable assumption). It should be noted 
that in this kind of simulation modelling, assumptions regarding dependence are 
always made, either explicitly or implicitly.  For example if dependence is ignored, it 
is highly likely that simulated variables are, in fact, considered to be independent, 
which is a strong assumption.  After considering dependence between gross losses, 
the terms of the insurance contract are imposed, which provides net losses, and losses 
to the contract.  The profile of losses to the contract is then used to calculate a risk-
adjusted price. 
 

 
Figure 1: Project diagram for City Council Insurance Case Study 

 
 
Figure 2 shows the cumulative distribution function of gross losses (red line on right), 
net losses excluding aggregate deductible protection (green line in the middle), and 
net losses including the aggregate deductible protection (blue line on left).  Essentially 
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the insurer covers the difference between the blue and red lines, and it can be seen 
that there are no losses to the insurance contract in about 50% of simulations. 
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Figure 2.  Gross and net loss profile 
 
Table 1 shows a summary of results.  The expected loss to the contract is £148,059, 
with the expected loss above £100k being £105,045.  Note this is the expected loss 
across all simulations: for many simulations, there will be no losses above £100k, and 
for some simulations, the losses above £100k could be substantial.  With a 
proportional hazards parameter of 1.4, the total risk-adjusted price is £316,043, which 
is more than twice the expected loss.  The difference between the risk-adjusted price 
and the expected loss represents the cost to the insured of the risk transfer. Using this 
approach, the risk-adjusted price can also be allocated back to the loss components, 
such that the sum is the total risk-adjusted price: this is also shown in Table 1. 
 

Table 1.  Output Summary 
 

 Average loss above £100k 105,045

 Average loss to Aggregate Deductible Protection 43,014

 Average Total Loss 148,059

 

 Proportional Hazards parameter 1.40

 Risk Adjusted Price for losses above £100k 254,394

 Risk Adjusted Price for Aggregate Deductible Protection 61,649

 Total Risk Adjusted Price 316,043
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3. Modelling a Lloyd’s Syndicate 
 
This case study considers a liability model of a Lloyd’s syndicate.  The syndicate was 
interested in the: 
 

 overall risk profile for the next underwriting year given its business plan, 
natural catastrophe exposures and reinsurance programme; 

 overall capital required to support underwriting in the next year; 
 allocation of capital by business division; 
 efficacy of the reinsurance programme. 

 
The aims of the analysis required a complex model that could be used to investigate 
many aspects of the syndicate’s structure and operation.  For simplicity, this case 
study considers the liabilities of only one underwriting year on an ultimate basis.  A 
more sophisticated model would also consider the cash flows to ultimate, reserving 
risk on prior business, asset and liquidity risk, reinsurance bad debt and other credit 
risks, and so on.  All of these additional components can be considered in a simulation 
environment, but adds to the model complexity. 
 
For business planning and management information purposes, the syndicate was 
organised into four main divisions, each writing a number of distinct classes of 
business.  The liability model was built to mirror the syndicate’s internal structure, 
since data were available at that level of detail, and results at that level would be 
meaningful and could easily be compared to traditional performance and planning 
measures.   
 
To help build and parameterise the model, historical information was obtained 
regarding aggregate losses by year of account for each class of business within each 
division.  In addition, individual loss information was obtained for large losses for 
each class, to enable large losses to be modelled individually.  Each division operated 
fairly autonomously, and purchased its own reinsurance cover.  The reinsurance 
arrangements for each division were also obtained to enable accurate modelling of 
gross and net losses.  The reinsurance arrangements were complex in some cases and 
included features such as: 
 

 Excess-of-Loss 
 Multiple Layers 
 Different numbers of reinstatements per layer 
 Different cost of reinstatements 
 Co-insurance (that is, not 100% placed) 
 Maximum aggregates 
 Backup policies 
 Reinstatement protection policies 

 
In addition to the division level reinsurance programmes, there was an Umbrella 
programme for losses breaching the reinsurance arrangements at division level.   
 
A high level view of the model structure is shown in Figure 3, which shows the 
division structure, umbrella reinsurance, and capital modelling components.  There 
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are 4 business divisions labelled, UK, Commercial, Marine and Aviation.  The UK 
division writes predominantly motor business, with some small commercial liability 
business.  The Commercial division writes predominantly large commercial property 
risks on a worldwide basis, and also acts as a reinsurer on property risks.  The 
Commercial division is exposed to natural catastrophes.  The Marine and Aviation 
divisions are self explanatory, and also have significant large loss exposure. 
 

 
 

Figure 3: Lloyd’s Syndicate High Level Diagram 
 
 
For more detail, it is necessary to ‘drill down’ into the boxes shown at the top level, as 
shown in Figure 4 for the Aviation division.  The boxes on the left hand side represent 
gross results at a class of business level.  Dependencies between gross losses at a class 
of business level are considered before passing the gross losses through the 
reinsurance programme.  For this division, there is a whole account excess-of-loss 
reinsurance programme that provides cover for aviation event losses aggregated 
across all classes (that is, a single aviation event can impact multiple classes).  
Reinsurance recoveries are allocated back to class level to enable loss profiles at that 
level to be estimated. 
 

 
 

Figure 4: Lloyd’s Syndicate Aviation Division 
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The model was built by first simulating gross losses at a class of business level within 
each division.  The high frequency/low severity “attritional” losses were modelled in 
aggregate by simulating a gross attritional loss ratio and multiplying by forecast gross 
premium income within each class.  The large losses were simulated individually 
using a frequency/severity approach, where the frequency of loss was linked to an 
exposure measure.   
 
Dependencies between aggregate gross losses at a class level within each division 
were considered before feeding the gross losses through the division level reinsurance 
programme.  Once netted down, the gross and net loss profiles for each class within 
each division can be investigated, together with the gross and net profiles at a division 
level. 
 
The syndicate’s own data were used to obtain the parameters of the model, 
supplemented by expert judgement.  For example, information was available on 
approximately 100 major aviation event losses (where a major event was defined as 
an aggregate loss above £250,000).  A Generalised Pareto distribution was fitted to 
the historical data and used for simulation purposes.  A graph of the observed and 
simulated cumulative distribution functions is shown in Figure 5.  It can be seen from 
Figure 5 that the fit is reasonable.  It can also be seen that by using an analytic 
distribution, it is possible to simulate losses that are more extreme than any observed 
in the past.  This is useful for ensuring that the syndicate has sufficient financial 
strength to withstand severe adverse deviations from its business plan. 
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Figure 5. Aviation Large losses – Observed and Fitted Cumulative Distributions 
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By simulating losses and passing them through the various reinsurance programmes, 
the efficiency of the programmes can be assessed. For example, a summary of the 
Aviation reinsurance programme is shown in Table 2.  The programme has six layers, 
with the base premium shown in the first column.  After simulating losses to the 
programme, the average cost of the programme allowing for reinstatements (Column 
2) can be compared with the average recovery (Column 3).  Allowing for the fact that 
the reinsurer would be expected to charge more than expected cost for the risk 
transfer, the cost of the cover seems reasonable at the lower layers.  The higher layers 
seem to cost proportionately more, reflecting the increased uncertainty associated 
with the higher layers.  It could be argued that the top layer is not really needed, but 
provides ‘sleep-easy’ cover since the cost is not large relative to the total reinsurance 
spend. 
 
 

Table 2: Aviation Reinsurance Summary 
 

(£000) 

Initial RI Premium 
excluding 

reinstatements 

Ave RI Premium 
including 

reinstatements 
Ave RI 

Recoveries 
Layer 1 2,616 7,009 5,548 
Layer 2 5,303 7,714 6,726 
Layer 3 1,697 1,907 1,312 
Layer 4 2,015 2,067 733 
Layer 5 919 923 156 
Layer 6 207 207 0 

 
 
Finally, results from the business divisions were combined to consider an overall 
profit/loss profile, taking account of dependencies between aggregate gross losses at a 
division level.  Once the overall profit/loss profile is obtained, it is possible to 
estimate overall capital required, allocate capital to each division (and class of 
business, if required), and measure the trade-off between reinsurance and capital. 
 
There is a number of ways of assessing capital requirements and adequacy.  In this 
case study, capital was set at a global level using a ‘Tail Value-at-Risk’ approach such 
that the expected capital shortfall is zero for a given risk tolerance, in this case a 5% 
level.  If Free Capital is defined as: 
 

Free Capital = Starting Capital + Net Premium – Net Claims – Expenses 
 
(ignoring investment income) then Tail Value-at-Risk at the 5% level is the expected 
value of Free Capital, given Free Capital is below the 5th percentile. This is easily 
calculated in a simulation environment by calculating the average of the lowest 5% of 
simulated values of Free Capital.  Tail Value-at-Risk is an example of a “coherent” 
risk measure that has a number of desirable properties making it particularly suitable 
for capital calculations (see Artzner et al, 1999). 
 
Having investigated capital at a global level, it is straightforward to allocate capital to 
different business divisions, if required.  However, overall capital requirements and 
allocation are very sensitive to assumptions regarding dependencies between classes 
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of business and between divisions, which highlights the importance of considering 
dependencies in financial modelling. 
 
Table 3 shows capital requirements and allocation by division for three different 
scenarios regarding dependence between divisions, keeping dependencies between 
classes of business within each division fixed.  In the first scenario, the divisions are 
assumed to be independent.  In the second scenario a standard correlation approach 
has been used with the rank correlation between divisions set at 30%.  Under the third 
scenario, the overall rank correlation is approximately 30% between divisions, but 
extreme “tail” losses tend to occur simultaneously.  A discussion of dependence 
concepts appears in Appendix A. 
 
 

Table 3: Capital Setting and Allocation – TVaR Risk Measure at 5% 
 

 (£000) Independent Correlated Tail Dependent 
Rank Correlation 0 0.3 ~0.3 

Total Capital Required 168,806 228,795 265,445 
UK Division 4,092 23,426 30,866 

Commercial Division 90,452 85,231 88,521 
Marine Division 45,555 60,626 76,075 

Aviation Division 33,971 64,459 76,894 
Umbrella Reinsurance -5,264 -4,947 -6,911 

 
 
£168m of capital required if the business divisions are assumed to be independent.  
An additional £60m of capital is required if the business divisions are assumed to 
have pair-wise rank correlations of 30% using a standard correlation approach (tail 
independence), and a further £37m if the tails are considered dependent, but the rank 
correlations are maintained at around 30%. It can be seen that the dependence 
assumptions have a significant effect on estimated total capital requirements 
 
In Table 3, the total capital has also been allocated to business division, in such a way 
that the divisions contributing the most risk to the global risk profile are penalised the 
most.   The “capital” allocated to the umbrella reinsurance is negative reflecting the 
trade-off between capital and reinsurance: it is often said that reinsurance is a 
substitute for capital, and in this case study, that trade-off has been quantified. 
 
If capital is set in this way, it does not mean that there will never be a capital shortfall 
(that is, capital being insufficient), but that the probability of capital being insufficient 
is small (and less than 5%).  A graph of the cumulative distribution of Free Capital is 
shown in Figure 6, which shows that the probability of Free Capital being less than 
zero (giving a capital shortfall) is about 2% in this example.  Figure 6 also shows that 
the potential downside is still large, and adjustments to the reinsurance programmes 
could be investigated to try and reduce the downside. 
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Figure 6: Cumulative Distribution of Free Capital 
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4. Conclusions 
 
The two case studies described in this paper highlight the potential uses of financial 
simulation models, and some of their benefits.  Although the case studies are 
relatively simple, they can be extended considerably to include other areas of risk and 
uncertainty.  For example, the liability model described can be extended to include the 
asset side of the balance sheet, and linked to an economic scenario generator that 
simulates, for example, inflation rates, short term interest rates and yield curves. 
 
Simulation modelling provides many challenges in model design, assumptions and 
parameterisation, but also offers significant business benefits.  The discipline of 
looking at all the risks of an insurance operation, and obtaining the relevant data for 
modelling, provides a thorough understanding of the business.  A sound financial 
model will have many uses, from business planning and quantifying management 
decisions to demonstrating financial strength to ratings agencies and regulators. 
 
Regulators have seen the potential benefits of “stochastic” modelling and are 
beginning to encourage, or even insist that insurance companies build their own 
internal financial models to ensure that companies understand the risks they take, and 
have sufficient capital to withstand adverse deviations in those risks such that 
policyholders are protected. 
 
As computer power increases and simulation methods become more widely 
understood, it is clear that the techniques will be used increasingly in the management 
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of insurance companies, since simulation modelling removes many of the difficulties 
previously associated with traditional risk theory. 
 
In fact, many now see stochastic modelling as fundamental to actuarial work.  As 
Chris Daykin, the UK Government Actuary states (see discussion of Wilkie, 1995): 
 

“I believe that stochastic modelling is fundamental to our profession.  
How else can we seriously advise our clients and our wider public on 
the consequences of managing uncertainty in the different areas in 
which we work?” 
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Appendix A 
 

Dependence Concepts 
 
 
When considering dependency, most analysts in the financial community think of 
correlation (usually Pearson correlation).  However, there is more to dependency than 
correlation.  Consider Figure A1, which shows four scatter plots of y against x.  The 
correlation between x and y in the plot on the top left is zero, although x and y show 
strong dependence.  This highlights a fact that is well known to statisticians: if x and y 
are independent, their correlation will be zero, but the corollary is not true, zero 
correlation does not imply independence.  In the other three plots, the correlation 
between x and y is 80%, but the pattern of dependence is very different.  The plot in 
the top right corner exhibits tail independence (that is, although the overall correlation 
is 80%, the correlation falls towards the tails, and falls to zero in the limit).  The plot 
in the bottom left corner exhibits upper and lower tail dependence (that is, low values 
of x and y tend to coincide, and high values of x and y tend to coincide), and the plot 
in the bottom right corner exhibits upper tail dependence only. 
 

 
Figure A1. Patterns of dependence 

 
In fact, all three plots with a correlation of 80% share an additional feature: the set of 
simulated values of x is identical in each plot, and the set of simulated values of y is 
identical in each plot.  In statistical terminology, the marginal distributions of x are 
identical and the marginal distributions of y are identical, both being Normal with 
mean = 0 and standard deviation = 1.  The only difference between the plots is the 
pairings of the simulated values of x and y, which specifies the dependency.  The plot 
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in the top right corner is a standard bivariate Normal distribution, which exhibits tail 
independence as a theoretical characteristic. 
 
The joint distributions of x and y where the correlation is 80% were generated using 
copulas.  A copula is a representation of a joint distribution that separates the 
marginal distributions from the dependency structure.  If F(x) is the cumulative 
distribution function of X, then 

 )(,),(),(),,,( 2121 pp xFxFxFCxxxF    

where 1 2( , , , )pF x x x  is the corresponding joint distribution and the function C() is a 

copula function.  Any multivariate distribution function can be written in a copula 
representation (although the form of the copula function is not always obvious).  An 
advantage of using copulas is that each marginal distribution F(x) can be a different 
distribution. 
 
Although copulas appeared in the statistical literature at least forty years ago, they 
have only recently been noticed by the financial community.  For a good introduction 
to the use of copulas in actuarial science, see Frees and Valdez (1998). 
 
 
 
 


