$6^{\text {th }}$ G LOBAL CONFERENCE OF ACTUARIES 18-19 February, 2004, N ew Delhi

By Walter de Oude

(Subject Code 01 - Subject G roup : Life Insurance)

Swiss Re

Cashflow pricing techniques

Swiss Re

 III
Objectives

- Illustrate the advantages of cash flow methods over traditional methods
- Give practical examples of how cash flow methods can be used for pricing
- Outline some useful techniques, based on the cash flow approach, which will enable us to better understand the business that we write

Swiss Re
III
The Actuarial Control Cycle

Swiss Re

 III
Traditional Methods (1)

■ Developed before computers were widely available

- Use tables of annuity (\vec{a}_{x}) and assurance $\left(A_{x}\right)$ factors, and commutation functions $\left(C_{x^{\prime}} D_{x^{\prime}} N_{x^{\prime}} \quad M_{x^{\prime}} \quad R_{x^{\prime}}\right.$ etc)

Swiss Re

 III
Traditional Methods (2)

- Determining premiums involved solving an equation like:
$P \ddot{a}_{x: \bar{n}]}=S A_{x \cdot \bar{n}]}+I+m P \ddot{a}_{x \cdot \bar{n}]}$
- where
- P, \quad S $=$ premium, suminsured
- I, m =initial, maintenance
expenses

Swiss Re

Problems with Traditional
Methods

- Assumptions are inflexible (eginterest rate cannot be varied over time)
- Difficult to allow for complex benefits (eg return of premiums on death)
- Can only allow for one decrement leg no allowance for profits and losses on surrenders, difficult to include rider benefits)

Swiss Re

 III
Cash Flow Methods (1)

- Make use of computers for complex calculations
- More complicated models are possible allowing us to overcome these disadvantages

■ More intuitive and easier to understand for non-actuaries

	CashFlow Methods (2)
	Can incorporate assumptions about: - surrenders and lapses 4 - riders and additional benefits 4 - valuation basis and method 4 - new business 4 - profitability targets 4 - cost of capital - bonuses and distribution of surplus - reinsurance

Swiss Re

\square

Cash Flow Methods (3)

- The basic idea
- Set up a column for every cash flow relevant to the policy, and some columns for inter mediate calculations if required
- For each column, multiply the possible cash flow by the probability of that cash flow occurring to get an expected cash flow
- Manipulate the cash flows to arrive at the desired result

Swiss Re

 IIIExamples. Products

- Endowment Insurance
- TermInsurance
- It is very easy to adapt cash flow pricing techniques to other products (eg annuities, unit-linked, etc)

Examples. Techniques

- Premium Rating
- Measures of Profitability
- Sensitivity and Scenario Testing
- Surrender Values
- Adding a Rider
- Model Office
- New Business Projections and Capital Requirements

A Simple Example

- 10 year endowment policy
- 45 year-old male
- nonprofit
- Sum Insured = Rs. 10,000
- Mortality = A67/70 Ult
- 4 \% Interest
- No expenses

Premium Rating (1)

- Traditional way of setting premium:

$$
P \ddot{a}_{45: \overline{10 \mid}}=10,000 A_{45: \overline{10}}
$$

- Solve for P by looking up tables P = Rs. 819. 35

Swiss Re

 III
Premium Rating (2)

- The Cash Flow Pricing Approach
- Set up columns of cash flows
(Premiums, Death \& Maturity Clai ms, Interest, Accumulated Cash Flow)
- Guess a reasonable premium
- Use "Goal Seek" or "Solver" to find the premium which makes the accumulated cash flow equal to ZERO at the end of the policy term

Premium Rating (3)

■ The Result:

Projection								
Year	Age	Ix	qx	Premium	Death	Maturity	Interest	Accumulated
					Claims	Claims		Cash Flow
				BOY	EOY	EOY	EOY	EOY
1	45	1.00000	0.00264	819.35	26.37	0.00	32.77	825.75
2	46	0.99736	0.00298	817.19	29.69	0.00	65.72	1678.96
3	47	0.99439	0.00336	814.76	33.39	0.00	99.75	2560.07
4	48	0.99105	0.00378	812.02	37.50	0.00	134.88	3469.47
5	49	0.98730	0.00426	808.95	42.05	0.00	171.14	4407.51
6	50	0.98310	0.00479	805.50	47.08	0.00	208.52	5374.44
7	51	0.97839	0.00538	801.65	52.61	0.00	247.04	6370.52
8	52	0.97313	0.00603	797.33	58.69	0.00	286.71	7395.88
9	53	0.96726	0.00676	792.53	65.34	0.00	327.54	8450.60
10	54	0.96073	0.00756	787.17	72.59	9534.69	369.51	0.00

Swiss Re

 III
Premium Rating - Expenses (1)

■ Initial Expenses: Rs. 80 per policy

- Maintenance Expenses: Rs. 10 per policy (including lst year)
- New Equation:

$$
\begin{array}{rl}
& P \ddot{a}_{45: \overline{10}}=10,000 A_{45: \overline{10} \mid}+80+10 \ddot{a}_{45: \overline{10 \mid}} \\
■ & P=\text { Rs. } 838,98
\end{array}
$$

Premium Rating - Expenses (2)

- The Cash Flow Pricing equivalent:

Projection										
Year	Age	IX	qx	Premium	Initial	M aint	Death	Maturity	Interest	Accumulated
					Expenses	Expenses	Claims	Claims		Cash Flow
				BOY	BOY	BOY	EOY	EOY	EOY	EOY
1	45	1.00000	0.00264	838.98	80.00	10.00	26.37	0.00	29.96	752.57
2	46	0.99736	0.00298	836.77	0.00	9.97	29.69	0.00	63.17	1612.84
3	47	0.99439	0.00336	834.28	0.00	9.94	33.39	0.00	97.49	2501.27
4	48	0.99105	0.00378	831.48	0.00	9.91	37.50	0.00	132.91	3418.24
5	49	0.98730	0.00426	828.33	0.00	9.87	42.05	0.00	169.47	4364.12
6	50	0.98310	0.00479	824.80	0.00	9.83	47.08	0.00	207.16	5339.17
7	51	0.97839	0.00538	820.85	0.00	9.78	52.61	0.00	246.01	6343.64
8	52	0.97313	0.00603	816.44	0.00	9.73	58.69	0.00	286.01	7377.66
9	53	0.96726	0.00676	811.51	0.00	9.67	65.34	0.00	327.18	8441.35
10	54	0.96073	0.00756	806.03	0.00	9.61	72.59	9534.69	369.51	0.00

Premium Rating - Reserves (1)

- The Traditional Methodimplicitly assumes that: Reserving Assumptions = Pricing Assumptions (Reserves = Accumulated Cash Flow)
- What if our reserving basis is different to (more conservative than) our pricing basis?
- Or if we have to allocate capital and charge for it separately?

Swiss Re

\square

Premium Rating - Reserves (2)

- What happens now?
- We no longer have an Accumulated Cash Flow. instead, we have Reserves
- We need to set up Reserves at each valuation date (assume this happens just before a policy anniversary) for the expected number of policies at that date
- We need to adjust the cash flows to hold the correct reserve at each valuation date . we may have insufficient or excess cash

Swiss Re

The Concept of Transfers (Surplus) (1)

- The Transfer (Surplus) is the remainder of the cash flow after the reserves have been set up for the year
- In General:

Transfer =

+ Cash Inflows (premiums, interest, etc)
- Cash Outflows (expenses, claims, etc) +Previous Year's Reserves
- This Year's Reserves
The concept of Transfers
(Surplus) (2)
- All transfers are equal to zero (ie nothing is left over after the

Swiss Re

The Concept of Transfers

- Now we make our reserving basis more conservative than our pricing basis:
- A67170 mortality (same as pricing basis)
- 3% interest (instead of 4%)
- 40 Zill mer adjustment for initial expenses (instead of 80)

Swiss Re

The Concept of Transfers (Surplus) (5)

- Our pattern of transfers changes
- negative at the start

Projection			nositive at the end								
Year	Age	Ix	qx	Premium	Initial	Maint	Death	M aturity	Interest	Reserves	Transfer
					Expenses	Expenses	Claims	Claims			
				BOY	BOY	BOY	EOY	EOY	EOY	EOY	EOY
1	45	1.00000	0.00264	838.98	80.00	10.00	26.37	0.00	29.96	828.17	-75.61
2	46	0.99736	0.00298	836.77	0.00	9.97	29.69	0.00	66.20	1716.71	-25.24
3	47	0.99439	0.00336	834.28	0.00	9.94	33.39	0.00	101.64	2625.54	-16.25
4	48	0.99105	0.00378	831.48	0.00	9.91	37.50	0.00	137.88	3554.54	-7.05
5	49	0.98730	0.00426	828.33	0.00	9.87	42.05	0.00	174.92	4503.50	2.37
6	50	0.98310	0.00479	824.80	0.00	9.83	47.08	0.00	212.74	5472.13	12.00
7	51	0.97839	0.00538	820.85	0.00	9.78	52.61	0.00	251.33	6460.08	21.84
8	52	0.97313	0.00603	816.44	0.00	9.73	58.69	0.00	290.67	7466.87	31.90
9	53	0.96726	0.00676	811.51	0.00	9.67	65.34	0.00	330.75	8491.95	42.16
10	54	0.96073	0.00756	806.03	0.00	9.61	72.59	9534.69	371.54	0.00	52.63

Swiss Re

The Concept of Transfers

■ Why?

- Our reserves are conservative
- Our cash flows are inadequate to set up the reserves at the beginning - we need to inject capital (negative transfers)
- We recoup this capital over the ter mof the policy as we expect experience to be better than the reserving basis (positive transfers)

Swiss Re

The Profit Signature (1)

- The pattern or shape of transfers over time showing the a mount of capital invested and its recovery over time

The Profit Signature (2)

- Ideally, the valuation basis should result in the following pattern of transfers
- absolute a mount not too large
(reserving basis not too strong)
- negative then positive
- should not turn negative in later years (reserving basis not too weak)

Swiss Re

 IIIWhy calculate transfers?

■ Now that we have injections and releases of capital (transfers), what do we use the m for?

■ ANSWER: Measuring Profit !!! (NB: these are expected profits)

Swiss Re

 III
Measuring Profit (1)

-How did we measure profit using traditional actuarial methods?

- ANSWER: We didn't
- The traditional actuarial approach was to build in some i mplicit conservatismin the premiumrates so that we expected a profit
- Expected profit was never quantified !!!

Swiss Re
 III

Measuring Profit (2)

- Ideally, a measure of profit should consider
- all cash flows
- time value of money (ieinterest)
- tax

Swiss Re

III
Measuring Profit (3)

- Measures of Profit
- Payback Period
- Internal Rate of Return
- Net Present Value
- Cost of Capital Comparison

Payback Period

- Expected number of years to recover original cash invest ment
- Problems
- ignores cash flows after the payback period
- ignores the rate of return required by shareholders
- Not a good measure of profitability

Internal Rate of Return (IRR)

- The discount rate which makes the expected net present value of transfers equal to zero

IRR $=i \quad$ where $\sum_{t}(1+i)^{-t}$ Transfer $_{t}=0$

- Problems
- multiple solutions possible
- reinvest ment assumption

Swiss Re

Net Present Value (NPV) (1)

NPV $=\sum_{t}(1+i)^{-t}$ Transfer $_{t}$

- Which discount rate?
- rate earned on invest ments
- shareholders' required rate (risk rate)
- Transfers involve the use of shareholder capital - therefore we should use the shareholders' required rate of return

Net Present Value (NPV) (2)

- The expected NPV (discounting at either the earned rate or the required shareholder rate) is someti mes expressed as a percentage of premium(or present value of premiums) for scaling purposes
iethe NPV per unit of premium

Cost of Capital
Measure the return achieved compared with the capital allocated to that policy business. Amount of capital allocated usually based on a combination of:

- Regulatory capital
- Respectability capital
- Risk based capital
- Return required on that capital set by
- Shareholder requirements
- Market pressure (returns available elsewhere, etc.)
- Calculated as a deduction in the cashflow model, and compared with the profit signature NPV discounted at an earned rate.

Swiss Re

 III
What does it all mean?

- The IRR can be thought of as the Thet UPK Cexipsccoutued e et oab bet he earned on the policy shareholder risk rate) can be thought of as the expected
- If the IRR is greater than the risk contribution te shareholder shareholders, then shareholders should be happy
- If the NPV is greater than zero, shareholders should be happy

Applying the Techniques (1)

Swiss Re III

Applying the Techniques (2)

Measures of Profitability					We need to increase the pre mi u m to ensure						
NPV @ earned rate			44.95								
NPV @ risk rate			0.00								
IRR			10.00\%		require						
Projection					Premium $838.98 \rightarrow 844.39$						
Year	Age	Ix	qx	Premium	Initial	Maint	Death	M aturity	Interest	Reserves	Transfer
					Expenses	Expenses	Claims	Claims			
				BOY	BOY	BOY	EOY	EOY	EOY	EOY	EOY
1	45	1.00000	0100264	844.39	80.00	10.00	26.37	0.00	30.18	828.17	-69.98
2	46	0.99736	000298	842.16	0.00	9.97	29.69	0.00	66.41	1716.71	-19.62
3	47	0.99439	0100336	839.66	0.00	9.94	33.39	0.00	101.86	2625.54	-10.66
4	48	0.99105	0000378	836.84	0.00	9.91	37.50	0.00	138.10	3554.54	-1.47
5	49	0.98730	$0 \mid 00426$	833.67	0.00	9.87	42.05	0.00	175.13	4503.50	7.92
6	50	0.98310	000479	830.12	0.00	9.83	47.08	0.00	212.95	5472.13	17.53
7	51	0.97839	0,00538	826.14	0.00	9.78	52.61	0.00	251.54	6460.08	27.35
8	52	0.97313	0,00603	821.70	0.00	9.73	58.69	0.00	290.88	7466.87	37.37
9	53	0.96726	0,00676	816.75	0.00	9.67	65.34	0.00	330.96	8491.95	47.61
10	54	0.96073	0,00756	811.23	0.00	9.61	72.59	9534.69	371.74	0.00	58.04

Sensitivity Testing

- Change one variable at a time to determine the effect on profitability
- Determine the effect on profitability if assumptions do not turn out as expected
- Determine which assumptions are the most crucial
- Understand your product and the risks

Swiss Re

 III
Scenario Testing

- Si milar to sensitivity analysis except that more than one variable is changed at a time

■ Exa mine a set of reasonably realistic scenarios and determine the effect on profitability (eg a worse case scenariol

- In reality, so me variables are linked (eginflation and interest rates, interest rates and lapses, etc)

Swiss Re

 III
Sensitivity Testing Exa mple(1)

- Look at two different products
- Endowment Insurance
- TermInsurance (no maturity benefit)
- Same assumptions as previous example
- Premiums have been set to earn the shareholders required return on capital

Sensitivity Testing Example (2)

Sensitivity Testing Example (3)

Measures of Profitability					- Terminsurance						
NPV @ earned rate			$\begin{array}{r} 10.12 \\ +0.01 \end{array}$								
NPV @ risk rate											
IRR			9.99\%								
Projection											
Year	Age	Ix	dx	Premium	Initial	Maint	Death	Maturity	Interest	Reserves	Transfer
					Expenses	Expenses	Claims	Claims			
				BOY	BOY	BOY	EOY	EOY	EOY	EOY	EOY
1	45	1.00000	0.00264	64.69	80.00	10.00	26.37	0.00	-1.01	-16.79	-35.90
2	46	0.99736	0.00298	64.52	0.00	9.97	29.69	0.00	1.51	3.66	5.91
3	47	0.99439	0.00336	64.33	0.00	9.94	33.39	0.00	2.32	20.87	6.10
4	48	0.99105	$0.0 ¢ 378$	64.11	0.00	9.91	37.50	0.00	3.00	34.32	6.25
5	49	0.98730	0.00426	63.87	0.00	9.87	42.05	0.00	3.53	43.44	6.36
6	50	0.98310	0.00479	63.60	0.00	9.83	47.08	0.00	3.89	47.58	6.43
7	51	0.97839	0.00538	63.29	0.00	9.78	52.61	0.00	4.04	46.08	6.44
8	52	0.97313	0.00603	62.95	0.00	9.73	58.69	0.00	3.97	38.19	6.40
9	53	0.96726	0.00676	62.57	0.00	9.67	65.34	0.00	3.64	23.11	6.28
10	54	0.96073	0.00756	62.15	0.00	9.61	72.59	0.00	3.03	0.00	6.09

Sensitivity Testing Example (4)

NPV @ earned rate $=44.95$

- NPV @iris krate
$=0.00$
- \| RR

$$
=10.00 \%
$$

Swiss Re

\square
Sensitivity Testing Exa mple (5)

Sensitivity Tests

- Increase mortality by 5%
- Decrease interest earning rate by 0.25% (25 basis points)

Swiss Re

 III
Increase Mortality by 5\%

-Endowment

- NPV @ earned rate
$=37.15(44.95)$
- NPV @ risk rate
$=-6.20(0.00)$
- \| RR
$=8.89 \%(10.00 \%)$
- Term
- NPV @ earned rate $=-8.06(10.12)$
- NPV @ risk rate $=-13.09(\cdot 0.01)$
- | RR
$=-1.71 \%(9.99 \%)$

Decrease Interest Rate by 0.25%

$$
\begin{aligned}
& \text { - Endowment } \\
& \text { ■ NPV @ earned rate } \\
& =.47 .75(44.95) \\
& \text { ■ NPV @ riskrate } \\
& =.64 .41(0.00) \\
& \text { - \| R R } \\
& =.3 .68 \%(10.00 \%) \\
& \text { - Term } \\
& \text { - NPV @ earned rate } \\
& =9.29(10.12) \\
& \text { - NPV @ risk rate } \\
& =-0.96(-0.01) \\
& \text { - IeR } \\
& =9.26 \%(9.99 \%)
\end{aligned}
$$

Sensitivity Test Results (1)

- Term
- Sensitive to changes in mortality, but not to changes in interest rates
- It is important that you get your mortality assumptions right
- Underwriting is very important
- It is not so important where the money is invested

Swiss Re

 III
Sensitivity Test Results (2)

-Endowment

- Endowment policies are sensitive to changes in interest rates, but not changes in mortality
- Mortality assumptions are not so important
- It is very important where the money is invested

Swiss Re

Surrenders and Lapses (1)

- How were surrenders and I apses treated under traditional actuarial methods?
- ANSWER: They were ignored.
- The traditional actuarial approach was to have surrender values which were less than the policy value so that a profit was made on surrender
- The effect was never quantified

Surrenders and Lapses (2)
What needs to be added

- surrender value scale (possible cash flows)
- surrender / |apse rates (s_{x})
- double decrement table (probabilities)
$(a q)_{x}=q_{x} *\left(1 \cdot 1 / 2 s_{x}\right)$
$(a s)_{x}=s_{x}^{*}\left(1-1 / 2 a_{x}\right)$
$(a l)_{x+1}=(a l)_{x}^{*}\left(1 \cdot s_{x}\right) *\left(1 \cdot q_{x}\right)$
- surrender claims become an extra cash flow item for calculating interest and transfers

Swiss Re

 III
Surrenders and Lapses (3)

- Set the surrender basis equal (approximately) to the pricing basis
- A67170 mortality
- 4 \% interest
- 80 Zill mer adjust ment for initial expenses

Swiss Re
 III

Surrenders and Lapses (4)

Swiss Re

Surrenders and Lapses (5)

- Profitability increases slightly since surrenders release reserves earlier than otherwise expected
- Notice that if the surrender value basis is close to the pricing basis, then the addition of surrenders has little impact on profitability
- A more generous surrender value basis would lead to expected losses

Swiss Re III

Surrenders and Lapses (6)

Measures of Profitability						$A n$	moreg				
NPV @ earned rate											
				26.88				nerous	surren	ar da	
NPV @ risk rate				-6.47			-3.5	\% interes			
IRR				8.53\%					st 1 in	ead 0	4.0%
Projection											
Year	Age	(al) x	(aq) x	(as) x	Premium	Death	M aturity	Surrender	Interest	Reserves	Transfer
						Claims	Claims	Claims			
					BOY	EOY	EOY	EOY	EOY	EOY	EOY
1	45	1.00000	0.00257	0.04993	844.39	25.71	0.00	38.65	30.18	786.77	-66.56
2	46	0.94749	0.00290	0.04993	800.06	27.50	0.00	78.40	63.09	1549.33	-14.79
3	47	0.89744	0.00327	0.04992	757.79	29.38	0.00	115.20	91.93	2251.08	-5.58
4	48	0.84971	0.00369	0.04991	717.48	31.35	0.00	149.19	118.40	2895.20	2.73
5	49	0.80417	0.00415	0.04989	679.03	33.39	0.00	180.51	142.65	3484.72	10.20
6	50	0.76070	0.00467	0.04988	642.33	35.52	0.00	209.31	164.78	4022.52	16.88
7	51	0.71921	0.00524	0.04987	607.29	37.71	0.00	235.69	184.90	4511.31	22.81
8	52	0.67957	0.00588	0.04985	573.83	39.96	0.00	259.80	203.13	4953.67	28.05
9	53	0.64170	0.00659	0.04983	541.85	42.26	0.00	281.73	219.56	5352.05	32.62
10	54	0.60550	0.00737	0.04981	511.28	44.61	5708.77	301.61	234.29	0.00	36.58

Swiss Re

 III
Adding a Rider (1)

- Example
- Total and Permanent Disablement (TPD) benefit . level premiums
- The TPD benefit is an acceleration of 50% of the death benefit
- Incidence Rate (ix)

1 per 1000 at age 45
increasing by 0,5 each year to age 54

Swiss Re

 III
Adding a Rider (2)

- What needs to be added
- TPD Benefit (50\% of Sum Insured) (possible cash flow)
- TPD incidence rates (ix) (probabilities) double decrement table (ignoring surrenders) $(a q)_{x}=a_{x} *\left(1 \cdot 1 / 2 * 50 \% i_{x}\right)$ $(a i)_{x}=50 \% i_{x}^{*}\left(1-1 / 2 q_{x}\right)$ $\left.(a))_{x+1}^{x}=(a)\right)_{x}^{*} *\left(1 \cdot 50 \% i_{x}\right) *\left(1 \cdot a_{x}\right)$
- TPD clai ms become an extra cash flow itemfor calculating interest and transfers
- Reserves should allow for TPD claims

Adding a Rider (3)

- In practice
- because (1-1/2 q_{x}) and ($\left.1 \cdot 1 / 2 * 50 \% i_{x}\right)$ are so close to 1 , this adjust ment is often ignored
- $\left(q_{x}+50 \% i_{x}\right)$ is often treated as a single decrement
- this is conservative as it overestimates mortality and TPD incidence

Swiss Re

 III
Adding a Rider (4)

- For our example
- Including the double decrement adjust ment, we get a premium of 850.07
- Ignoring the double decrement adjust ment, we get a premium of 850.13
- Not much difference

Swiss Re III

Adding a Rider (5)

Swiss Re

 III
Model Office (1)

- In all of our examples
- we considered only one particular policy (male, age 45, 10 year endowment)
- in reality, there are many different policies with many different parameters (age, sex, smoker, different policy terms, different policy types, etc)

Swiss Re

 III
Model Office (2)

- In practice
- we would develop assumptions about the volume and mix of business (by sex, age, smoker, policy type, policy ter m, etc)
- we would use cash flow pricing techniques to examine a range of "model points"
- we would multiply the per policy cash flows by the expected volume for each model point
- aggregate all the cash flows into a model office

Swiss Re

\square

Model Office (3)

- This will allow us to
- project expected capital injections and releases, which will allow us to plan for future capital needs
- cross-subsidise between different market segments (age, sex, policy-type) and ensure that we are still profitable overall
- understand the sensitivity of our whole portfolio to changes in experience assumptions or changes in the volume or mix of business
- monitor emerging experience against our assumptions

Swiss Re

 III
New Business Projections (1)

- Example

```
- one policy type only
    (male, age 45, 10 year endowment,
    no surrenders or rider benefits)
    - new business projections
    1998 100 policies
    1999 200 policies
    2000 300 policies
    thereafter 200 policies each year
```


Swiss Re

 III
New Business Projections (2)

- If initial capital strains are high and new business levels are high,
 negative tiansters will contiluuefor
Capital Transfers some time

	Year of Issue												
	20 bo	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	Total
	100	200	300	200	200	200	200	200	200	200	200	200	
2000	-7.0												-7.0
2001	-2.0	-14.0											-16.0
2002	-1. 1	-3.9	-21.0										-26.0
2003	-0.1	-2.1	-5.9	-14.0									-22.2
2004	0.8	-0.3	-3.2	-3.9	-14.0								-20.6
2005	1.8	1.6	-0.4	-2.1	-3.9	-14.0							-17.2
2006	2.7	3.5	2.4	-0.3	-2.1	-3.9	-14.0						-11.7
2007	3.7	5.5	5.3	1.6	-0.3	-2.1	-3.9	-14.0					-4.3
2008	4.8	7.5	8.2	3.5	1.6	-0.3	-2.1	-3.9	-14.0				5.2
2009	\$.8	9.5	11.2	5.5	3.5	1.6	-0.3	-2.1	-3.9	-14.0			16.7
2010		11.6	14.3	7.5	5.5	3.5	1.6	-0.3	-2.1	-3.9	-14.0		23.6
2011			17.4	9.5	7.5	5.5	3.5	1.6	-0.3	-2.1	-3.9	-14.0	24.6

New Business Projections

Swiss Re

Extensions (1)

- The basic cash flow model
- columns of expected cash flows and intermediate calculations
- expected cash flows are derived by multiplying a possible cash flow by the probability that the cash flow occurs
- transfers - expected capital requirements and releases
- measures of profitability

Swiss Re

 III
Extensions (2)

- Extra cash flow columns can be added in the same way
- additional benefits and riders
- bonuses and distributions of surplus
- reinsurance cash flows
- taxation
- etc

Extensions (3)

- Further enhancements
- multiple state models
(eg for disability income products)
- stochastic models
(eg to calculate probabilities and distributions)
- asset/liability models
(considering the interaction between assets and liabilities)

Summary. Cash Flow Methods

- Easy
- cash flows shown explicitly, easy to construct and understand, etc.
- Versatile
- complex benefits, surrenders, etc
- Effective
- profitability, sensitivity testing, capital requirements, etc.

Questions?

Swiss Re

Some Useful Spreadsheet Functions (1)

- Microsoft Excel
- VLOOKUP(value; table; column; [range])
- IRR(values; guess)
- NPV(rate; values)
- Tools/Goal Seek or Tools/Solver

Swiss Re

Some Useful Spreadsheet Functions (2)

- Lotus 1.2.3
- @VLOOKUP(x; range; column-offset)
- @l RR(guess; range)
- @ N P V(interest; range; [type])
- Range/Analyse/Backsolver or

Range/Analyse/Solver

Swiss Re

 III
A few more hints

- In a spreadsheet model, try to use named variables and ranges so that variables can be easily changed
- In practice, claims would usually be assumed to occur in the middle of the year rather than the end of the year . this affects the interest column
- Greater accuracy can be achieved by performing monthly rather than yearly projections
- Spreadsheets are useful for simple models or pilot models, but any significant work should make use of a computer program

