6th GLOBAL CONFERENCE OF ACTUARIES 18 – 19 February, 2004, New Delhi

By Walter de Oude

(Subject Code 01 – Subject Group : Life Insurance)

Π

Cashflow pricing techniques

Cashflow Pricing Walter de Oude 5th GCA Feb 2004

īīī

0 bj ecti ves

- Illustrate the advantages of cash flow methods over traditional methods
- Give practical examples of how cash flow methods can be used for pricing
- Outline some useful techniques, based on the cash flow approach, which will enable us to better understand the business that we write

The Actuarial Control Cycle

Traditional Methods (1)

- Developed before computers were widely available
- Use tables of annuity (\ddot{a}_x) and assurance (A_x) factors, and commutation functions $(C_{x'}, D_{x'}, N_{x'}, M_{x'}, R_{x'})$ etc)

Traditional Methods (2)

Determining premiums involved
solving an equation like:
$$P\ddot{a}_{x:\overline{n}|} = SA_{x:\overline{n}|} + I + mP\ddot{a}_{x:\overline{n}|}$$

where

- P, S = premium, sum insured
- I, m =initial, maintenance
 expenses

Problems with Traditional Methods

Π

- Assumptions are inflexible (eginterest rate cannot be varied over time)
- Difficult to allow for complex benefits (eg return of premiums on death)
- Can only allow for one decrement (eg no allowance for profits and losses on surrenders, difficult to include rider benefits)

Cash Flow Methods (1)

- Make use of computers for complex calculations
- More complicated models are possible allowing us to overcome these disadvantages
- More intuitive and easier to understand for non-actuaries

Cash Flow Methods (2)

Can incorporate assumptions about:

- surrenders and Lapses ${\bf 4}$
- riders and additional benefits ${\bf 4}$
- valuation basis and method ${\bf 4}$
- new business 4
- profitability targets 4
- cost of capital
- bonuses and distribution of surplus
- rei nsurance

Cash Flow Methods (3)

- Set up a column for *every* cash flow relevant to the policy, and some columns for intermediate calculations if required
- For each column, multiply the possible cash flow by the probability of that cash flow occurring to get an expected cash flow
- Manipulate the cash flows to arrive at the desired result

Π

Examples - Products

- Endowment Insurance
- Term Insurance
- It is very easy to adapt cash flow pricing techniques to other products (eg annuities, unit-linked, etc)

Π

Examples - Techniques

- Premium Rating
- Measures of Profitability
- Sensitivity and Scenario Testing
- Surrender Values
- Adding a Rider
- Model Office
- New Business Projections and Capital Requirements

Π

A Simple Example

- 10 year endowment policy
- 45 year-old male
- non-profit
- Sum Insured = Rs. 10,000
- Mortality = A67/70 Ult
- 4 % Interest
- No expenses

! / /

হাই

Ш

Premium Rating (1)

Traditional way of setting premium:

$$P\ddot{a}_{45:\overline{10}} = 10,000A_{45:\overline{10}}$$

Solve for P by looking up tables P = Rs. 819.35

Π

Premium Rating (2)

- The Cash Flow Pricing Approach
 - Set up columns of cash flows (Premiums, Death & Maturity Claims, Interest, Accumulated Cash Flow)
 - Guess a reasonable premium
 - Use "Goal Seek" or "Solver" to find the premium which makes the accumulated cash flow equal to ZERO at the end of the policy term

Π

Premium Rating (3)

■ The Result:

Projection								
Year	Age	lx	qx	Premium	Death	Maturity	Interest	Accumulated
					Claims	Claims		Cash Flow
				BOY	EOY	EOY	EOY	EOY
1	45	1.00000	0.00264	819.35	26.37	0.00	32.77	825.75
2	46	0.99736	0.00298	817.19	29.69	0.00	65.72	1678.96
3	47	0.99439	0.00336	814.76	33.39	0.00	99.75	2560.07
4	48	0.99105	0.00378	812.02	37.50	0.00	134.88	3469.47
5	49	0.98730	0.00426	808.95	42.05	0.00	171.14	4407.51
6	50	0.98310	0.00479	805.50	47.08	0.00	208.52	5374.44
7	51	0.97839	0.00538	801.65	52.61	0.00	247.04	6370.52
8	52	0.97313	0.00603	797.33	58.69	0.00	286.71	7395.88
9	53	0.96726	0.00676	792.53	65.34	0.00	327.54	8450.60
10	54	0.96073	0.00756	787.17	72.59	9534.69	369.51	0.00

Premium Rating - Expenses (1)

- Initial Expenses: Rs. 80 per policy
- Maintenance Expenses:
 Rs. 10 per policy (including 1st year)
- New Equation:

$$P\ddot{a}_{45:\overline{10|}} = 10,000A_{45:\overline{10|}} + 80 + 10\ddot{a}_{45:\overline{10|}}$$

P = Rs. 838. 98

Premium Rating - Expenses (2)

■ The Cash Flow Pricing equivalent:

Projec	ction									
Year	Age	lx	qx	Premium	Initial	Maint	Death	Maturity	Interest	Accumulated
					Expenses	Expenses	Claims	Claims		Cash Flow
				BOY	BOY	BOY	EOY	EOY	EOY	EOY
1	45	1.00000	0.00264	838.98	80.00	10.00	26.37	0.00	29.96	752.57
2	46	0.99736	0.00298	836.77	0.00	9.97	29.69	0.00	63.17	1612.84
3	47	0.99439	0.00336	834.28	0.00	9.94	33.39	0.00	97.49	2501.27
4	48	0.99105	0.00378	831.48	0.00	9.91	37.50	0.00	132.91	3418.24
5	49	0.98730	0.00426	828.33	0.00	9.87	42.05	0.00	169.47	4364.12
6	50	0.98310	0.00479	824.80	0.00	9.83	47.08	0.00	207.16	5339.17
7	51	0.97839	0.00538	820.85	0.00	9.78	52.61	0.00	246.01	6343.64
8	52	0.97313	0.00603	816.44	0.00	9.73	58.69	0.00	286.01	7377.66
9	53	0.96726	0.00676	811.51	0.00	9.67	65.34	0.00	327.18	8441.35
10	54	0.96073	0.00756	806.03	0.00	9.61	72.59	9534.69	369.51	0.00

Premium Rating - Reserves (1)

- The Traditional Method implicitly assumes that: Reserving Assumptions = Pricing Assumptions (Reserves = Accumulated Cash Flow)
- What if our reserving basis is different to (more conservative than) our pricing basis?
- Or if we have to allocate capital and charge for it separately?

Premium Rating - Reserves (2)

- What happens now?
 - We no longer have an Accumulated Cash Flow instead, we have Reserves
 - We need to set up Reserves at each valuation date (assume this happens just before a policy anniversary) for the expected number of policies at that date
 - We need to adjust the cash flows to hold the correct reserve at each valuation date - we may have insufficient or excess cash

Π

The Concept of Transfers (Surplus) (1)

- The Transfer (Surplus) is the remainder of the cash flow after the reserves have been set up for the year
- In General:
 - Transfer =
 - + Cash Inflows (premiums, interest, etc)
 - Cash Outflows (expenses, claims, etc)
 - +Previous Year's Reserves
 - This Year's Reserves

Π

The Concept of Transfers (Surplus) (2)

Back to our example: If Reserves are set equal to the Accumulated Cash Flow

(ie reserving basis = pricing basis)...

- A67/70 mortality
- 4% interest
- 80 Zillmer adjustment for initial expenses

Π

The Concept of Transfers (Surplus) (3)

				 All transfers are equal to zero (ie nothing is left over after the 									
Proie	Projection reserves are set up)												
Year	Age	lx		qx	Premium	Initial	Maint	Death	Maturity	Interest	Reserves	Transfer	
						Expenses	Expenses	Claims	Claims				
					BOY	BOY	BOY	EOY	EOY	EOY	EOY	EOY	
1	45	1.00000	0.	00264	838.98	80.00	10.00	26.37	0.00	29.96	752.57	0.00	
2	46	0.99736	0.	00298	836.77	0.00	9.97	29.69	0.00	63.17	1612.84	0.00	
3	47	0.99439	0.	00336	834.28	0.00	9.94	33.39	0.00	97.49	2501.27	0.00	
4	48	0.99105	0.	00378	831.48	0.00	9.91	37.50	0.00	132.91	3418.24	0.00	
5	49	0.98730	0.	00426	828.33	0.00	9.87	42.05	0.00	169.47	4364.12	0.00	
6	50	0.98310	0.	00479	824.80	0.00	9.83	47.08	0.00	207.16	5339.17	0.00	
7	51	0.97839	0.	00538	820.85	0.00	9.78	52.61	0.00	246.01	6343.64	0.00	
8	52	0.97313	0.	00603	816.44	0.00	9.73	58.69	0.00	286.01	7377.66	0.00	
9	53	0.96726	0.	00676	811.51	0.00	9.67	65.34	0.00	327.18	8441.35	0.00	
10	54	0.96073	0.	00756	806.03	0.00	9.61	72.59	9534.69	369.51	0.00	0.00	

The Concept of Transfers (Surplus) (4)

Π

- Now we make our reserving basis more conservative than our pricing basis:
 - A67/70 mortality (same as pricing basis)
 - 3 % interest (instead of 4 %)
 - 40 Zillmer adjustment for initial expenses (instead of 80)

Π

The Concept of Transfers (Surplus) (5)

Our pattern of transfers changes

- negative at the start

				positive at the end									
Proje	ction						po.			ПМ			
Year	Age	lx		qx	Premium	Initial Expenses	Maint Expenses	Death Claims	Maturity Claims	Interest	Reserves	Transfer	
					BOY	BOY	BOY	EOY	EOY	EOY	EOY	EOY	
1	45	1.00000	0.0	0264	838.98	80.00	10.00	26.37	0.00	29.96	828.17	-75.61	
2	46	0.99736	0.0	0298	836.77	0.00	9.97	29.69	0.00	66.20	1716.71	-25.24	
3	47	0.99439	О.Ф	0336	834.28	0.00	9.94	33.39	0.00	101.64	2625.54	-16.25	
4	48	0.99105	0.0	0378	831.48	0.00	9.91	37.50	0.00	137.88	3554.54	-7.05	
5	49	0.98730	О.Ф	0426	828.33	0.00	9.87	42.05	0.00	174.92	4503.50	2.37	
6	50	0.98310	0.0	0479	824.80	0.00	9.83	47.08	0.00	212.74	5472.13	12.00	
7	51	0.97839	0.0	0538	820.85	0.00	9.78	52.61	0.00	251.33	6460.08	21.84	
8	52	0.97313	0.0	0603	816.44	0.00	9.73	58.69	0.00	290.67	7466.87	31.90	
9	53	0.96726	0.0	0676	811.51	0.00	9.67	65.34	0.00	330.75	8491.95	42.16	
10	54	0.96073	0.0	0756	806.03	0.00	9.61	72.59	9534.69	371.54	0.00	52.63	

Π

The Concept of Transfers (Surplus) (6)

■ Why??

- Our reserves are conservative
 - Our cash flows are inadequate to set up the reserves at the beginning - we need to inject capital (negative transfers)
 - We recoup this capital over the term of the policy as we expect experience to be better than the reserving basis (positive transfers)

The Profit Signature (1)

The pattern or shape of transfers over time - showing the amount of capital invested and its recovery over time

The Profit Signature (2)

- Ideally, the valuation basis should result in the following pattern of transfers
 - absolute amount not too large (reserving basis not too strong)
 - negative then positive
 - should not turn negative in later years (reserving basis not too weak)

W hy calculate transfers?

Now that we have injections and releases of capital (transfers), what do we use them for?

ANSWER: Measuring Profit !!!
 (NB: these are *expected* profits)

Ш

Measuring Profit (1)

How did we measure profit using traditional actuarial methods?

ANSWER: We didn't

- The traditional actuarial approach was to build in some implicit conservatism in the premium rates so that we expected a profit
- Expected profit was never quantified !!!

Measuring Profit (2)

- Ideally, a measure of profit should consider
 - all cash flows
 - time value of money (ieinterest)
 - tax

Π

Measuring Profit (3)

- Measures of Profit
 - Payback Period
 - Internal Rate of Return
 - Net Present Value
 - Cost of Capital Comparison

Ш

Payback Period

- Expected number of years to recover original cash investment
- Problems
 - ignores cash flows after the payback period
 - i gnores the rate of return required by sharehol ders
- Not a good measure of profitability

Internal Rate of Return (IRR)

The discount rate which makes the expected net present value of transfers equal to zero

IRR = *i* where
$$\sum_{t} (1+i)^{-t}$$
 Transfer_t = 0

- Problems
 - multiple solutions possible
 - reinvestment assumption

Net Present Value (NPV) (1)

- NPV = $\sum_{t} (1+i)^{-t}$ Transfer_t
- Which discount rate?
 - rate earned on investments
 - sharehol ders' required rate (risk rate)
- Transfers involve the use of shareholder capital - therefore we should use the shareholders' required rate of return

Net Present Value (NPV) (2)

The expected NPV (discounting at either the earned rate or the required shareholder rate) is sometimes expressed as a percentage of premium (or present value of premiums) for scaling purposes

ie the NPV per unit of premium

Π

Cost of Capital

- Measure the return achieved compared with the capital allocated to that policy business. Amount of capital allocated usually based on a combination of:
 - Regulatory capital
 - Respectability capital
 - Risk based capital
- Return required on that capital set by
 - Shareholder requirements
 - Market pressure (returns avaialable elsewhere, etc.)
- Calculated as a deduction in the cashflow model, and compared with the profit signature NPV discounted at an earned rate.

Ш

What does it all mean?

- The IRR can be thought of as the ThetNPM (dipected edoabethe shareholder risk rate) can be thought of as the expected
- If the IRR is greater than the risk rate required by shareholders, then shareholders should be happy
 - If the NPV is greater than zero, shareholders should be happy

Applying the Techniques (1)

Meas	ures	of Profitab	ility		— D-	-l <i>i</i>					
					Ba	ck to ou	ur exai	npie			
		ned rate	0.01			_			_		
	@ risl	< rate	-34.11			– Inve	estmen	t Earni	na Rate	: 4%	
IRR			4.00%						9		
						- Shar	ehol de	ers' Rig	sk Rate	· 10 %	
Proje	ction					Unu	chor ac			. 10 /0	
	A			Description	1	N 4 - ' - 1	Death		1.1	D	Τ
Year	Age	lx	qx	Premium	Initial	Maint	Death	Maturity	Interest	Reserves	Transfer
					Expenses	Expenses	Claims	Claims			
				BOY	BOY	BOY	EOY	EOY	EOY	EOY	EOY
1	45	1.00000	0.00264	838.98	80.00	10.00	26.37	0.00	29.96	828.17	-75.61
2	46	0.99736	0.00298	836.77	0.00	9.97	29.69	0.00	66.20	1716.71	-25.24
3	47	0.99439	0.00336	834.28	0.00	9.94	33.39	0.00	101.64	2625.54	-16.25
4	48	0.99105	0.00378	831.48	0.00	9.91	37.50	0.00	137.88	3554.54	-7.05
5	49	0.98730	0.00426	828.33	0.00	9.87	42.05	0.00	174.92	4503.50	2.37
6	50	0.98310	0.00479	824.80	0.00	9.83	47.08	0.00	212.74	5472.13	12.00
7	51	0.97839	0.00538	820.85	0.00	9.78	52.61	0.00	251.33	6460.08	21.84
8	52	0.97313	0.00603	816.44	4 0.00 9.73 58.69 0.00		0.00	290.67	7466.87	31.90	
9	53	0.96726	0.00676	811.51	0.00	9.67	65.34	0.00	330.75	8491.95	42.16
10	54 0.96073 0.00756 806.0				0.00	9.61	72.59	9534.69	371.54	0.00	52.63

Applying the Techniques (2)

Meas	sures	of Profitat	oil	ity		■ We	need to	o incre	ase the	e premi	um to	ensure
NPV	@ eai	rned rate		44.95								ehol ders
NPV	@ risl	k rate		0.00					ng the			
IRR			1	0.00%		req	ui re					
						•	mium 8	00 00 CC	<u> </u>	1 20		
Proje	ction					FIE		550.70	-> 044	4.37		
Year	Age	lx		qx	Premium	Initial	Maint	Death	Maturity	Interest	Reserves	Transfer
	.,					Expenses	Expenses	Claims	Claims			
					BOY	BOY	BOY	EOY	EOY	EOY	EOY	EOY
1	45	1.00000	0	.00264	844.39	80.00	10.00	26.37	0.00	30.18	828.17	-69.98
2	46	0.99736	0	00298	842.16	0.00	9.97	29.69	0.00	66.41	1716.71	-19.62
3	47	0.99439	0	.00336	839.66	0.00	9.94	33.39	0.00	101.86	2625.54	-10.66
4	48	0.99105	0	.00378	836.84	0.00	9.91	37.50	0.00	138.10	3554.54	-1.47
5	49	0.98730	0	.00426	833.67	0.00	9.87	42.05	0.00	175.13	4503.50	7.92
6	50	0.98310	0	.00479	830.12	0.00	9.83	47.08	0.00	212.95	5472.13	17.53
7	51	0.97839	0	.00538	826.14	0.00	9.78	52.61	0.00	251.54	6460.08	27.35
8	52	0.97313	0	.00603	821.70	0.00	9.73	58.69	0.00	290.88	7466.87	37.37
9	53	0.96726	0	00676	816.75	0.00	9.67	65.34	0.00	330.96	8491.95	47.61
10	54	0.96073	0	00756	811.23	0.00	9.61	72.59	9534.69	371.74	0.00	58.04

Page 40

Applying the Techniques (3)

Page 41

Π

Sensitivity Testing

- Change one variable at a time to determine the effect on profitability
 - Determine the effect on profitability if assumptions do not turn out as expected
 - Determine which assumptions are the most crucial
 - Understand your product and the risks

Π

Scenario Testing

- Si milar to sensitivity analysis except that more than one variable is changed at a time
- Examine a set of reasonably realistic scenarios and determine the effect on profitability (eg a worse case scenario)
- In reality, some variables are linked (eg inflation and interest rates, interest rates and lapses, etc)

Sensitivity Testing Example (1)

- Look at two different products
 - Endowment Insurance
 - Term Insurance (no maturity benefit)
- Same assumptions as previous example
- Premiums have been set to earn the shareholders required return on capital

Sensitivity Testing Example (2)

Meas	sures	of Profita	bility	V								
NPV	@ ea	rned rate	2	4.95		🗖 Fr	ndowme	ntIns	urance			
NPV	@ ris	sk rate		0.00								
IRR			10	.00%								
Proje	ection											
Year	Age	lx	(qх	Premium	Initial	Maint	Death	Maturity	Interest	Reserves	Transfer
						Expenses	Expenses	Claims	Claims			
					BOY	BOY	BOY	EOY	EOY	EOY	EOY	EOY
1	45	1.00000	0.0	0264	844.39	80.00	10.00	26.37	0.00	30.18	828.17	-69.98
2	46	0.99736	0.0	0298	842.16	0.00	9.97	29.69	0.00	66.41	1716.71	-19.62
3	47	0.99439	0.0	0336	839.66	0.00	9.94	33.39	0.00	101.86	2625.54	-10.66
4	48	0.99105	0.0	0378	836.84	0.00	9.91	37.50	0.00	138.10	3554.54	-1.47
5	49	0.98730	0.0	0426	833.67	0.00	9.87	42.05	0.00	175.13	4503.50	7.92
6	50	0.98310	0.0	0479	830.12	0.00	9.83	47.08	0.00	212.95	5472.13	17.53
7	51	0.97839			826.14	0.00	9.78	52.61	0.00	251.54	6460.08	27.35
8	52	0.97313	0.0	0603	821.70	0.00	9.73	58.69	0.00	290.88	7466.87	37.37
9	53	0.96726	0.0	0676	816.75	0.00	9.67	65.34	0.00	330.96	8491.95	47.61
10	54	0.96073			811.23	0.00	9.61	72.59	9534.69	371.74	0.00	58.04

Sensitivity Testing Example (3)

Meas	sures	of Profita	bility									
NPV	@ ea	rned rate	1	0.12		-						
NPV	@ ris	k rate		0.01			ermlns	urance				
IRR			9.	99%								
Proje	ction											
Year	Age	lx	(x	Premium	Initial	Maint	Death	Maturity	Interest	Reserves	Transfer
						Expenses	Expenses	Claims	Claims			
					BOY	BOY	BOY	EOY	EOY	EOY	EOY	EOY
1	45	1.00000	0.0	0264	64.69	80.00	10.00	26.37	0.00	-1.01	-16.79	-35.90
2	46	0.99736	0.0	0298	64.52	0.00	9.97	29.69	0.00	1.51	3.66	5.91
3	47	0.99439	0.0	0336	64.33	0.00	9.94	33.39	0.00	2.32	20.87	6.10
4	48	0.99105	0.0	9378	64.11	0.00	9.91	37.50	0.00	3.00	34.32	6.25
5	49	0.98730	0.0	0426	63.87	0.00	9.87	42.05	0.00	3.53	43.44	6.36
6	50	0.98310	0.0	0 479	63.60	0.00	9.83	47.08	0.00	3.89	47.58	6.43
7	51	0.97839	0.0	9538	63.29	0.00	9.78	52.61	0.00	4.04	46.08	6.44
8	52	0.97313	0.0	0603	62.95	0.00	9.73	58.69	0.00	3.97	38.19	6.40
9	53	0.96726	0.0	\$676	62.57	0.00	9.67	65.34	0.00	3.64	23.11	6.28
10	54	0.96073	0.0	9756	62.15	0.00	9.61	72.59	0.00	3.03	0.00	6.09

Page 46

Sensitivity Testing Example (4)

Term

- NPV @ earned rate= 10.12
- NPV @ risk rate = -0.01
- I RR = 9.99%

Sensitivity Testing Example (5)

Sensi tivity Tests

- Increase mortality by 5 %
- Decrease interest earning rate by 0.25% (25 basis points)

Π

Increase Mortality by 5%

- Endowment
- NPV @ earned rate = 37.15 (44.95)
- NPV @ risk rate
 = -6.20 (0.00)
- IRR = 8.89% (10.00%)

- Term
- NPV @ earned rate = -8.06 (10.12)
- NPV @ risk rate = -13.09 (-0.01)
- IRR = -1.71% (9.99%)

Π

Decrease Interest Rate by 0.25%

- Endowment
- NPV @ earned rate = -47.75 (44.95)
- NPV @ risk rate = -64.41 (0.00)
- IRR = -3.68% (10.00%)

Term

- NPV @ earned rate
 = 9.29 (10.12)
- NPV @ risk rate = -0.96 (-0.01)
- IRR = 9.26% (9.99%)

Sensitivity Test Results (1)

- Term
 - Sensitive to changes in mortality, but not to changes in interest rates
 - It is important that you get your mortality assumptions right
 - Underwriting is very important
 - It is not so important where the money is invested

Sensitivity Test Results (2)

- Endowment
 - Endowment policies are sensitive to changes in interest rates, but not changes in mortality
 - Mortality assumptions are not so important
 - It is very important where the money is invested

Surrenders and Lapses (1)

How were surrenders and lapses treated under traditional actuarial methods?

- ANSWER: They were ignored.
 - The traditional actuarial approach was to have surrender values which were less than the policy value so that a profit was made on surrender
 - The effect was never quantified

Surrenders and Lapses (2)

What needs to be added

- surrender value scale (possible cash flows)
- surrender / Lapse rates (s_x)
- double decrement table (probabilities)
 (aq)_x = q_x * (1 ½s_x)
 (as)_x = s_x * (1 ½q_x)
 (al)_{x+1} = (al)_x * (1 s_x) * (1 q_x)
- surrender claims become an extra cash flow item for calculating interest and transfers

Surrenders and Lapses (3)

- Set the surrender basis equal (approximately) to the pricing basis
 - A67/70 mortality
 - 4 % interest
 - 80 Zillmer adjustment for initial expenses

Surrenders and Lapses (4)

Meas	sures	of Profita	bility												
				40.0/		Δ	SSIIMA	d surr	render	rate [.]	5% pa				
		rned rate		40.06		Assumed surrender rate: 5% pa									
	@ ris	k rate		3.74											
IRR				10.86%											
Proje	ection														
Year	ar Age (al)x (aq)		(aq)x	(as)x	Premium	Initial	Maint	Death	Maturity	Surrender	Interest	Reserves	Transfer		
						Expenses	Expenses	Claims	Claims	Claims					
					BOY	BOY	BOY	EOY	EOY	EOY	EOY	EOY	EOY		
1	45	1.00000	0.00257	0.04993	844.39	80.00	10.00	25.71	0.00	37.68	30.18	786.77	-65.59		
2	46	0.94749	0.00290	0.04993	800.06	0.00	9.47	27.50	0.00	76.72	63.09	1549.33	-13.12		
3	47	0.89744	0.00327	0.04992	757.79	0.00	8.97	29.38	0.00	113.06	91.93	2251.08	-3.45		
4	48	0.84971	0.00369	0.04991	717.48	0.00	8.50	31.35	0.00	146.81	118.40	2895.20	5.11		
5	49	0.80417	0.00415	0.04989	679.03	0.00	8.04	33.39	0.00	178.11	142.65	3484.72	12.60		
6	50	0.76070	0.00467	0.04988	642.33	0.00	7.61	35.52	0.00	207.06	164.78	4022.52	19.12		
7	51	0.71921	0.00524	0.04987	607.29	0.00	7.19	37.71	0.00	233.79	184.90	4511.31	24.72		
8	52	0.67957	0.00588	0.04985	573.83	0.00	6.80	39.96	0.00	258.39	203.13	4953.67	29.46		
9	53	0.64170	0.00659	0.04983	541.85	0.00	6.42	42.26	0.00	280.96	219.56	5352.05	33.39		
10	54	0.60550	0.00737	0.04981	511.28	0.00	6.05	44.61	5708.77	301.61	234.29	0.00	36.58		

Surrenders and Lapses (5)

- Profitability increases slightly since surrenders release reserves earlier than otherwise expected
- Notice that if the surrender value basis is close to the pricing basis, then the addition of surrenders has littleimpact on profitability
- A more generous surrender value basis would lead to expected losses

Surrenders and Lapses (6)

Meas	sures	of Profital	oility								
NPV	@ ea	rned rate		26.88		A I	more ge	enerous	surren	ider bas	si s
NPV	@ ris	k rate		-6.47							
IRR				8.53%			- 3.5	% intere	est (ins	stead of	· 4.0%)
Proje	ction										
Year	Age	(al)x	(aq)x	(as)x	Premium	Death	Maturity	Surrender	Interest	Reserves	Transfer
						Claims	Claims	Claims			
					BOY	EOY	EOY	EOY	EOY	EOY	EOY
1	45	1.00000	0.00257	0.04993	844.39	25.71	0.00	38.65	30.18	786.77	-66.56
2	46	0.94749	0.00290	0.04993	800.06	27.50	0.00	78.40	63.09	1549.33	-14.79
3	47	0.89744	0.00327	0.04992	757.79	29.38	0.00	115.20	91.93	2251.08	-5.58
4	48	0.84971	0.00369	0.04991	717.48	31.35	0.00	149.19	118.40	2895.20	2.73
5	49	0.80417	0.00415	0.04989	679.03	33.39	0.00	180.51	142.65	3484.72	10.20
6	50	0.76070	0.00467	0.04988	642.33	35.52	0.00	209.31	164.78	4022.52	16.88
7	51	0.71921	0.00524	0.04987	607.29	37.71	0.00	235.69	184.90	4511.31	22.81
8	52	0.67957	0.00588	0.04985	573.83	39.96	0.00	259.80	203.13	4953.67	28.05
9	53	0.64170	0.00659	0.04983	541.85	42.26	0.00	281.73	219.56	5352.05	32.62
10	54	0.60550	0.00737	0.04981	511.28	44.61	5708.77	301.61	234.29	0.00	36.58

Π

Adding a Rider (1)

- Example
 - Total and Permanent Disablement (TPD) benefit level premiums
 - The TPD benefit is an acceleration of 50% of the death benefit
 - Incidence Rate (i_x) 1 per 1000 at age 45 increasing by 0.5 each year to age 54

Adding a Rider (2)

- What needs to be added
 - TPD Benefit (50% of Sum Insured) (possible cash flow)
 - TPD incidence rates (i_x) (probabilities) double decrement table (ignoring surrenders) (aq)_x = q_x * (1 - ½ * 50% i_x) (ai)_x = 50% i_x * (1 - ½ q_x) (al)_{x+1} = (al)_x * (1 - 50% i_x) * (1 - q_x)
 - TPD claims become an extra cash flow item for calculating interest and transfers
 - Reserves should allow for TPD claims

Adding a Rider (3)

- In practice
 - because $(1 \frac{1}{2} q_x)$ and $(1 \frac{1}{2} * 50\% i_x)$ are so close to 1, this adjustment is often ignored
 - $(q_x + 50 \% i_x)$ is often treated as a single decrement
 - this is conservative as it overestimates mortality and TPD incidence

Π

Adding a Rider (4)

- For our example
 - Including the double decrement adjustment, we get a premium of 850.07
 - Ignoring the double decrement adjustment, we get a premium of 850.13
 - Not much difference

Π

Adding a Rider (5)

Meas	sures	of Profitab	oility											
NPV	@ ear	ned rate			44.64		Igno	oring t	the do	uble de	ecreme	ent ad	justme	ent
NPV	@ ris	k rate			0.00		5	5					5	
IRR					10.00%									
Proje	ction													
Year	ear Age Ix q		qx		ix	Premium	Initial	Maint	Death	Maturity	TPD	Interest	Reserves	Transfer
							Expenses	Expenses	Claims	Claims	Claims			
						BOY	BOY	BOY	EOY	EOY	EOY	EOY	EOY	EOY
1	45	1.00000	0.0026	64	0.00050	850.13	80.00	10.00	26.37	0.00	5.00	30.41	828.99	-69.82
2	46	0.99686	0.0029	98	0.00075	847.47	0.00	9.97	29.68	0.00	7.48	66.66	1715.43	-19.44
3	47	0.99315	0.003	36	0.00100	844.31	0.00	9.93	33.35	0.00	9.93	101.99	2618.99	-10.47
4	48	0.98882	0.003	78	0.00125	840.63	0.00	9.89	37.42	0.00	12.36	137.99	3539.26	-1.32
5	49	0.98384	0.0042	26	0.00150	836.40	0.00	9.84	41.90	0.00	14.76	174.63	4475.76	8.03
6	50	0.97818	0.004	79	0.00175	831.58	0.00	9.78	46.84	0.00	17.12	211.90	5427.95	17.55
7	51	0.97178	0.0053	38	0.00200	826.14	0.00	9.72	52.25	0.00	19.44	249.78	6395.22	27.25
8	52	0.96461	0.006	03	0.00225	820.05	0.00	9.65	58.18	0.00	21.70	288.22	7376.85	37.12
9	53	0.95662	0.0067	76	0.00250	813.26	0.00	9.57	64.62	0.00	23.92	327.22	8372.06	47.16
10	54 0.94777 0.00756 0.00275 805.73		0.00	9.48	71.61	9380.02	26.06	366.73	0.00	57.36				

Ш

Model Office (1)

- In all of our examples
 - we considered only one particular policy (male, age 45, 10 year endowment)
 - in reality, there are many different policies with many different parameters (age, sex, smoker, different policy terms, different policy types, etc)

Π

Model Office (2)

- In practice
 - we would develop assumptions about the volume and mix of business (by sex, age, smoker, policy type, policy term, etc)
 - we would use cash flow pricing techniques to examine a range of "model points"
 - we would multiply the per policy cash flows by the expected volume for each model point
 - aggregate all the cash flows into a model office

Ш

Model Office (3)

- This will allow us to
 - project expected capital injections and releases, which will allow us to plan for future capital needs
 - cross-subsidise between different market segments (age, sex, policy-type) and ensure that we are still profitable overall
 - understand the sensitivity of our whole portfolio to changes in experience assumptions or changes in the volume or mix of business
 - monitor emerging experience against our assumptions

New Business Projections (1)

- Example
 - one policy type only (male, age 45, 10 year endowment, no surrenders or rider benefits)
 - new business projections
 1998 100 policies
 1999 200 policies
 2000 300 policies
 thereafter 200 policies each year

New Business Projections (2)

						•	new	busi	ness	sleve	els ar	re hi (high gh, t i nue 1
New Busin Capital Tra	1 1	ections					0				, ,,,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0011	
Capital IIa						Year of		e ti r	ne				
	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	Total
	100	2001	300	2000	2001	2000	2000	2007	2000	2007	200	200	rotar
		200	000	200	200		200		200	200		200	
2000	-7.0												-7.0
2001	-2.0	-14.0											-16.0
2002	-1.1	-3.9	-21.0										-26.0
2003	-0.1	-2.1	-5.9	-14.0									-22.2
2004	0.8	-0.3	-3.2	-3.9	-14.0								-20.6
2005	1.8	1.6	-0.4	-2.1	-3.9	-14.0							-17.2
2006	2.7	3.5	2.4	-0.3	-2.1	-3.9	-14.0						-11.7
2007	3.7	5.5	5.3	1.6	-0.3	-2.1	-3.9	-14.0					-4.3
2008	4.8	7.5	8.2	3.5	1.6	-0.3	-2.1	-3.9	-14.0				5.2
2009	5.8	9.5	11.2	5.5	3.5	1.6	-0.3	-2.1	-3.9	-14.0			16.7
2010		11.6	14.3	7.5	5.5	3.5	1.6	-0.3	-2.1	-3.9	-14.0		23.6
2011			17.4	9.5	7.5	5.5	3.5	1.6	-0.3	-2.1	-3.9	-14.0	24.6

Page 68

New Business Projections (3)

Π

Extensions (1)

- The basic cash flow model
 - columns of expected cash flows and intermediate calculations
 - expected cash flows are derived by multiplying a possible cash flow by the probability that the cash flow occurs
 - transfers expected capital requirements and releases
 - measures of profitability

Π

Extensions (2)

- Extra cash flow columns can be added in the same way
 - additional benefits and riders
 - bonuses and distributions of surplus
 - reinsurance cash flows
 - taxation
 - etc

20

Π

Extensions (3)

- Further enhancements
 - multiple state models (eg for disability income products)
 - stochastic models (eg to calculate probabilities and distributions)
 - asset/liability models (considering the interaction between assets and liabilities)

Summary - Cash Flow Methods

- Easy
 - cash flows shown explicitly, easy to construct and understand, etc.
- Versatile
 - complex benefits, surrenders, etc
- Effective
 - profitability, sensitivity testing, capital requirements, etc.

Π

Questions?

Π

Some Useful Spreadsheet Functions (1)

- Microsoft Excel
 - VLOOKUP(value; table; column; [range])
 - IRR(values; guess)
 - NPV(rate; values)
 - Tools/Goal Seek or Tools/Solver

Π

Some Useful Spreadsheet Functions (2)

- Lotus 1-2-3
 - @VLOOKUP(x; range; column-offset)
 - @IRR(guess; range)
 - @NPV(interest; range; [type])
 - Range/Anal yse/Backsol ver or Range/Anal yse/Sol ver

Π

A few more hints

- In a spreadsheet model, try to use named variables and ranges so that variables can be easily changed
- In practice, claims would usually be assumed to occur in the middle of the year rather than the end of the year - this affects the interest column
- Greater accuracy can be achieved by performing monthly rather than yearly projections
- Spreadsheets are useful for simple models or pilot models, but any significant work should make use of a computer program